Sleaford Regeneration Area Modelling

Traffic Modelling Report

Lincolnshire countr councir
 HIGHWAYS ALLIANCE

October 2015

Document Control Sheet

Project Title	Sleaford Regeneration Area Modelling
Report Title	Traffic Modelling Report
Revision	F
Status	Final
Control Date	$27 / 10 / 15$

Record of Issue

Issue	Status	Author	Date	Check	Date	Authorised	Date
A	Draft	NSS	$12 / 08 / 15$	AW	$13 / 08 / 15$	PR	$15 / 08 / 15$
B	Final	NSS	$26 / 08 / 15$	PR	$26 / 08 / 15$	PR	$26 / 08 / 15$
C	Final	NSS	$10 / 09 / 15$	PR	$10 / 09 / 15$	PR	$10 / 09 / 15$
D	Final	NSS	$15 / 09 / 15$	PR	$15 / 09 / 15$	PR	$15 / 05 / 15$
E	Final	NSS	$08 / 10 / 15$	PR	$08 / 10 / 15$	PR	$08 / 05 / 15$
F	Final- following stakeholder meeting	PR	$27 / 10 / 15$	PR	$27 / 10 / 15$	PR	$27 / 10 / 15$

Distribution

Organisation	Contact	Copies
Lincolnshire County Council	Lee Rowley	Electronic
North Kesteven District Council	Deborah Roberts	

This Report is presented to Lincolnshire County Council in respect of Sleaford Regeneration Area Modelling and may not be used or relied on by any other person or by the client in relation to any other matters not covered specifically by the scope of this Report.

Notwithstanding anything to the contrary contained in the Report, Mouchel Limited working as Lincolnshire County Council Highways Alliance is obliged to exercise reasonable skill, care and diligence in the performance of the services required by Lincolnshire County Council and Mouchel Limited shall not be liable except to the extent that it has failed to exercise reasonable skill, care and diligence, and this report shall be read and construed accordingly.

This Lincolnshire County Council Highways Alliance Report has been prepared by Mouchel Limited. No individual is personally liable in connection with the preparation of this Report. By receiving this Report and acting on it, the client or any other person accepts that no individual is personally liable whether in contract, tort, for breach of statutory duty or otherwise.

Contents

1 Introduction. 1
2 Methodology 2
3 Proposed and Committed Developments 10
4 Highway Impacts: Part A - Reference Cases 13
5 Highway Impacts: Part B - Do-Something Options 16
6 Highway Impacts: Part C - Option 7 23
7 Summary and Conclusions. 27
Appendices
Appendix A - Summary of Network Changes
Appendix B - Correspondence from Network Rail
Appendix C - TRICS Outputs for Proposed Development
Appendix D - Traffic Flow Diagrams

Table of Figures

Figure 2-1 - Journey Time Routes9Figure 3-1 - Location of Developments 10

HIGHWAYS ALLIANCE
Tables
Table 2-1 - Growth Factors Summary - AM and PM Peak Hour 3
Table 3-1 - Indicative Alternative Development on Tesco - Vehicle Trip Generation 11
Table 3-2 - Committed/Proposed Development - Vehicle Trip Generation 12
Table 4-1 - Network Performance - Reference Case A1 AM \& PM Peak Hour - 2022 13
Table 4-2 - Network Performance - Reference Case B AM \& PM Peak Hour - 2022. 13
Table 4-3 - Journey Time - Ref. Cases A1 \& B AM \& PM Peak Hour (mm:ss) - 2022.1 14
Table 4-4 - Comparison of Reference Cases A1 and A0 - Network Statistics - 2022. 15
Table 4-5 - Comparison of Reference Cases A1 and A0 - Journey Times - 2022 15
Table 5-1 - Network Performance - AM Peak Hour - 2022 16
Table 5-2 - Network Performance - PM Peak Hour - 2022 17
Table 5-3 - Journey Time - AM Peak (mm:ss) - 2022 20
Table 5-4 - Journey Time - PM Peak (mm:ss) - 2022 22
Table 6-1 - Network Performance - Option 7 AM Peak Hour - 2022 23
Table 6-2 - Network Performance - Options 7 PM Peak Hour - 2022 23
Table 6-3 - Journey Time - AM Peak (mm:ss) - Option 7-2022 24
Table 6-4 - Journey Time - PM Peak (mm:ss) - Option 7 - 2022 25
Table 7-1 - Network Performance Percentage Change - AM Peak - 2022 27
Table 7-2 - Network Performance Percentage Change - PM Peak - 2022 28
Table 7-3 - Network Performance Percentage Change - AM Peak Option 7 - 2022. 29
Table 7-4 - Network Performance Percentage Change - PM Peak Option 7-2022. 29
Table 7-5 - Outline Cost Estimates 29
Table 7-6 - Network Statistic Comparison - AM Peak - 2022 30
Table 7-7 - Network Statistic Comparison - PM Peak - 2022 31
Table 7-8 - Network Statistic Comparison - AM Peak Option 7 - 2022 32
Table 7-9 - Network Statistic Comparison - PM Peak Option 7-2022. 32

HIGHWAYS ALLIANCE

1 Introduction

1.1 Background

Mouchel Consulting, working as part of Lincolnshire County Council Highways Alliance, has been appointed by the County Council (LCC) and North Kesteven District Council (NKDC) to undertake traffic modelling using Sleaford Traffic Model to help gain an understanding of various access strategies for the Sleaford Regeneration Area following the withdrawal of proposals for a new Tesco development.
1.2 Purpose of the Report

The purpose of this report is to present the findings of traffic modelling undertaken to investigate various access strategies discussed during a meeting on $6^{\text {th }}$ March 2015 between representatives from LCC and NKDC and contained in the subsequently provided brief.

This report describes the proposals for the Sleaford Regeneration Area and the developments it will facilitate, particularly focussing on The Maltings and Tesco sites. The report describes the traffic modelling and analysis undertaken and the resulting outputs. Specifically, this report describes the impact of changes to the highway network in the various strategies and developments, in highway performance terms, both on the local network and on key individual junctions within the town centre.

The scope of this Traffic Modelling Report has been agreed with officers at LCC and NKDC.

1.3 Structure of the Report

Following on from this introduction, Section 2 describes the methodology and tools used to undertake the traffic modelling. Section 3 outlines the details of the proposed developments and changes to the highway network assessed through this modelling study. Section 4 to 6 describe the outputs from the traffic modelling in terms of the impact of the developments and changes on the highway network as a whole and on specific junctions. Finally, Section 7 presents a summary of the report and conclusions.

2 Methodology

2.1 Traffic Impact

The potential traffic impact of the various strategies can only be robustly assessed through the comparison of highway network operation before and after the implementation of the measures and the associated developments. This comparison can only be made through the use of traffic modelling at both a strategic and local level. For the purposes of this assessment, the Sleaford Traffic Model has been used to assess the traffic impact on the highway network as a whole within Sleaford and the immediately surrounding area.

It should be noted that no engineering assessment has been undertaken for the options being considered.

2.2 Traffic Model

The current base model for Sleaford, used in this commission, was developed in 2013 and was validated to observed traffic flows for the same year. The base model can be used to assess both AM and PM peak hours.

2.3 Traffic Forecasting

Demand matrices for the forecasting models have been derived by merging the background traffic matrices with the development traffic matrices.

TEMPRO growth factors have been applied to the calibrated base year matrices at the origin-destination level to create background traffic matrices.

Development trip matrices have been developed by estimating trip generation of developments by land use and applying trip distributions from a set of donor zones with similar land uses. The development trips information was procured from earlier studies submitted to LCC as part of the impact assessment of the South East Sleaford Regeneration Route (SESRR) phase 1 and 2 and other developments.

The model development process considers one forecast year scenario (2022) for the AM and PM peak hour assessments. The 2022 forecast traffic levels were estimated by applying growth factors to the 2013 base model matrices. These growth factors were derived from the Department for Transport's TEMPRO program (Trip End Model Presentation Program) Version 6.2.

The overall traffic growth between the 2013 base year and 2022 forecast year in the AM and PM peak hour models has been capped to TEMPRO (dataset 6.2). The growth factors summarised in the following table below (split by region and trip purpose) were used to derive the overall TEMPRO growth.

Table 2-1 - Growth Factors Summary - AM and PM Peak Hour

Trip Purpose	Region	Morning Peak Hour				Evening Peak Hour			
		Origin		Destination		Origin		Destination	
Commute Home Based and NonHome Based	GB	1.06	6.3\%	1.063	6.3\%	1.1	5.9\%	1.06	5.9\%
	Lincs	1.05	4.6\%	1.041	4.1\%	1	4.0\%	1.04	4.4\%
	Sleaford	1.05	5.2\%	1.055	5.5\%	1.1	5.2\%	1.05	5.1\%
Other Employers Business and Non-Home Based	GB	1.09	8.7\%	1.087	8.7\%	1.1	8.6\%	1.09	8.6\%
	Lincs	1.09	8.6\%	1.085	8.5\%	1.1	8.2\%	1.08	8.2\%
	Sleaford	1.09	9.3\%	1.089	8.9\%	1.1	8.9\%	1.09	9.0\%
All Other Home Based and NonHome Based	GB	1.06	6.4\%	1.064	6.4\%	1.1	6.5\%	1.06	6.5\%
	Lincs	1.04	4.4\%	1.04	4.0\%	1	4.3\%	1.05	4.6\%
	Sleaford	1.05	5.2\%	1.05	5.0\%	1.1	5.4\%	1.05	5.3\%

Source: TEMPRO 6.2

The overall levels of traffic growth between the 2013 and 2022 generated by TEMPRO were 7.9\% (AM peak) and 7.4\% (PM peak). The committed/proposed developments in Sleaford account for 57% and 59% of this growth in the AM and PM peaks respectively. The details of the trips generated by the committed/proposed developments are summarised in Section 3 of this report.

The traffic forecasts do not make any adjustments for potential mode shift as a result of transport policy interventions. Furthermore, it has been assumed that the full forecast increases in traffic will occur in the peak periods and no account of the potential for peak spreading has been taken (peak spreading occurs when drivers alter their travel patterns to avoid the congested peak hours resulting in traffic growth occurring outside of the peaks and the peak periods therefore lengthening in time).

2.4 Assessment Methodology

The assessment considers one forecast year - 2022 for the AM and PM peak hour assessments. The assessment of the Sleaford Regeneration Area options can be split in into the following three parts:

2.4.1 Part A - Reference Case Scenarios

The Reference Case (Do-minimum) represents the future situation which includes all the trips from the committed and proposed developments along with their associated highway improvements. These scenarios provide the assumed future situation without any of the options implemented and enable the 'with options' (Do-Something) scenarios to be assessed against the scenario when none of the options have been implemented.

There are two primary reference case scenarios considered as a part of the assessments:

- Reference Case A1 - used for comparison with all options with exception of Option 7; and,
- Reference Case B - used for comparison with Option 7 only. Option 7 has been developed primarily to assess the impact of delivering the Maltings development alone but has been assessed alongside a significantly reduced level of committed development, therefore, a second reference case, 'B', has been developed purely for this option.

In addition, a secondary reference case, Reference Case A0, has been developed to demonstrate the impact of the proposed increases in level crossing downtime. Reference Case A1 uses the proposed future downtimes (see Section 2.4.4) proposed by Network Rail while A0 uses the current downtimes. Reference Case A0 has primarily been used for a comparison with A1. Reference Cases A1 and A0 differ only in the crossing downtimes used.

Reference Cases A1 and A0 include the following committed/proposed developments along with their associated highway improvements.

- King Edward Street
- Holdingham and alterations to A15/A17 (Holdingham Roundabout)
- Bass Maltings
- Sleaford South (Handley Chase)
- Sleaford West
- Grantham Road (both residential and employment)
- Pride Parkway
- Albourne development - alternative proposals for the Tesco site

Reference Cases A1 and A0 include the following changes to the existing highway network associated with the committed developments:

- Holdingham Roundabout Improvements
- Mareham Lane/Maltings Way traffic signals
- Carre Street traffic signals
- New four arm roundabout on Grantham Road associated with development either side of Grantham Road
- New four arm roundabout on A15 associated with the Sleaford West development
- Network changes associated with Sleaford South Development (site access)
- Proposed changes to the downtimes for railway crossings on South Gate and King Edward Street.

Reference Case B includes the following committed/proposed developments along with their associated highway improvements.

- King Edward Street
- Holdingham and alterations to A15/A17 (Holdingham Roundabout)
- Sleaford South (Handley Chase)

Reference Case B includes the following changes to the existing highway network associated with the committed developments:

- Holdingham Roundabout Improvements
- Network changes associated with Sleaford South Development (site accesses)
- Proposed changes to the downtimes for railway crossings on South Gate and King Edward Street.

2.4.2 Part B - Do-Something Test Scenarios

The following options, assessed for both the weekday AM and PM peak hours, constitute the Do-Something test scenarios (see Appendix A for diagrammatic representations of these options:

- Do-Something Option 1 - Link Road (South East Sleaford Regeneration Route (SESRR) Phase1 with railway overbridge) between Boston Road and Mareham Lane operational with railway crossing and South Gate level crossing permanently closed.
- Do-Something Option 2 - Link Road (SESRR Phase 1 Link Road with railway overbridge) extended to a signalised junction on East Gate (SESRR Phase 2) through current site of LCC offices. East Gate becomes two-way between Northgate and Carre Street. Level crossing on South Gate permanently closed.
- Do-Something Option 3 - No Link Road (SESRR Phase 1) over railway. Tesco site to be accessed from Boston Road and Bass Maltings development to be accessed via Mareham Lane. South Gate level crossing remains open.
- Do-Something Option $4 a$ - No Link Road (SESRR Phase 1) over railway. Tesco site to be accessed from Boston Road also extended to East Gate (SESRR Phase 2) through current LCC offices. Bass Maltings development accessed via Mareham Lane. East Gate becomes two-way. South Gate level crossing remains open.
- Do-Something Option 4b - No Link Road (SESRR Phase 1) over railway. Tesco site to be accessed from Boston Road also extended to East Gate (SESRR Phase 2) through current LCC offices. Bass Maltings development accessed via Mareham Lane. Both East Gate and Boston Road become twoway. South Gate level crossing remains open.
- Do-Something Option 5 - No Link Road (SESRR Phase1) over railway. Tesco site to access via Boston Road and additional access to northern site via South Gate. Bass Maltings development accessed via Mareham Lane. Level crossing remains open. This is similar to Option 3 but with the addition of a second access to the Tesco site via a link to the southern extent of South Gate, immediately north of the level crossing.
- Do-Something Option 6 - No Link Road (SESRR Phase 1) over railway. Access to Bass Maltings development via Mareham Lane. South Gate level crossing remains open. New Sleaford Southern Distributor Road (SSDR) connecting A15 to A17, with new roundabout junctions with A15, London Road, Mareham Lane and A17. Access to Bass Maltings development via Mareham Lane with additional access to Mareham Lane from the south connecting to the Southern Distributor Road.
- Do-Something Option 7 - No Link Road (SESRR Phase 1) over railway. Access to Bass Maltings development via Mareham Lane. South Gate level crossing remains open (see Section 2.4.3).
- Do-Something Option 8 - No Link Road (SESRR Phase 1) over railway. Access to Bass Maltings development via Mareham Lane. South Gate level crossing is closed to trains with the crossing being permanently open. This option has not been taken forward for further analysis with the Sleaford Traffic Model. The closure of the South Gate level crossing to trains is unlikely to be supported by Network Rail or the Train Operating Companies as it would sever direct routes. Additional infrastructure (e.g. track, signalling, etc) as well as reversing movements would be required to enable to continue the operation of some services.
- Do-Something Option 9a - No Link Road (SESRR Phase 1) over railway. Access to Bass Maltings development via Mareham Lane. South Gate level crossing remains open. South Gate is pedestrianised between South Gate and Water Gate. Access to Jermyn Street maintained with South Gate operating as a two-way 'access only' link between Boston Road and Jermyn Street.
- Do-Something Option 9b - No Link Road (SESRR Phase 1) over railway. Access to Bass Maltings development via Mareham Lane. South Gate level crossing remains open. South Gate is pedestrianised between South Gate and East Gate. Access to Jermyn Street maintained with South Gate operating as a two-way 'access only' link between Boston Road and Jermyn Street.

All Do-Something (DS) scenarios (with the exception of Option 7) include all the committed/proposed developments along with their associated highway changes. It should be noted that the SESRR Phase 1 has planning permission but the second phase does not.

It should also be noted that a number of the individual elements included in the various scenarios could have significant impacts on the local highway network if implemented alone. Therefore, caution should be used when reviewing the outputs of the following analysis and in attributing impacts to any one of the component elements of the various scenarios.

2.4.3 Part C - Do Something Option 7

Option 7 has been tested separately to the other options presented in this report to provide an assessment of the development of the Maltings Development alongside only a limited number of committed developments.

In addition to developments and highway improvements in Reference Case Scenario B, this option includes only the trips and highway changes associated with Bass Maltings development, which include a new signal junction of Mareham Lane/ Maltings Way.

2.4.4 Level Crossing Downtimes

The Sleaford Traffic Base Model utilises level crossing downtime data from surveys undertaken in 2013. Network Rail has plans to change the level crossings at South Gate and King Edward Street from manual to automatic barriers and has provided the future estimated downtimes for both level crossings to allow for the options in this study to be appropriately modelled for the future situation.

Network Rail estimates that the downtime will increase to 5 minutes for eastbound trains and to around 3.5 minutes for westbound trains. For simplicity, the average future downtime in both directions has been calculated and used in the traffic modelling. An average downtime of 4.25 minutes per train has been used in the various modelling scenarios.

Network Rail has stated that, as a worst case, it estimates that a total of nine trains will pass through the level crossings per hour (both directions combined). The total downtime is applied pro rata to a 100 second signal cycle.

These changes in crossing downtimes represent a very significant increase in delays and amount to the two crossings being closed for over 38 minutes in every hour. However, Network Rail has indicated that this is likely to be a worst case.

The only difference between the two ' A ' reference cases is that Reference Case A0 uses the existing (2013) crossing downtimes while Reference Case A1 uses the future crossing downtimes suggested by Network Rail.

A summary of the information provided by Network Rail is included in Appendix B

2.5 Assessment of Highways impact

The AM and PM peak hours for a typical weekday have been assessed using the following model outputs:

- Overall Network Performance Statistics;
- Traffic Flows;
- Journey Time data
- Junction delay

2.5.1 Overall Traffic Model Network Performance Statistics

The indicators of overall network performances are as follows:

- Total Travel Time - Total journey time of all vehicles during the modelled period;
- Transient Queuing - Queues that occur at junctions operating within their designed capacity; for example vehicles stopping momentarily at a give-way line or during one traffic signal cycle;
- Over-Capacity Queuing - Queues that occur due to there being more traffic than there is network capacity to deal with; for example traffic can then be held for more than one cycle at a traffic signal junction;
- Total Trips on Network - The total number of vehicles on the network modelled in detail.

2.5.2 Traffic Flows

Traffic flow diagrams from the traffic model are presented in Appendix D, showing traffic flows for the town centre for all the scenarios for both the AM and PM peaks.

2.5.3 Journey Times

Five journey time routes were developed for the purposes of validating the SATURN Base Model. These have been used to compare the different scenario in terms of
their impact on journey times through the highway network but do not represent all journey options available.

The five journey time routes are shown on Figure 2-1 below.
Figure 2-1 - Journey Time Routes

The results for each of these outputs are detailed below separately for the Reference Case and Do-Something Options in Section 4, Section 5 and Section 6.

Proposed and Committed Developments

3.1 Background

Following the decision of Tesco not to pursue its consented development in Sleaford, Tesco has suggested that another proposal could provide an alternative for the future development of the site. The site in question currently remains in the ownership of Tesco.

Figure 3-1 below shows the locations of the various committed and proposed developments.

Figure 3-1 - Location of Developments

3.2 Description of Proposed Development

A potential alternative option to the consented Tesco scheme has been suggested and this has been used as the basis upon which to calculate vehicle trip generation for the site. The development quantum set out below has been used as the basis to assess vehicular trip generation for the Tesco site:

- Retail (non-food) approx. 57,500ft ${ }^{2}$;
- Drive through restaurant
- Retirement Homes (approx. 36-40);
- Residential developments (high density houses or flats);
- Family pub /restaurant; and,
- possibility of development shops with flats above (approx. 15-20,000ft²);

Access to the Tesco site will be taken from the SESRR or Boston Road and may potentially involve re-alignment of the northern section of the SESRR where it forms a junction with Boston Road. As no indicative plans showing the potential realignment are available, this has not been taken into account in the current model runs and would have only limited impact on the outputs from the model. It is understood that the potential realignment may hinder the development of SESRR Phase 2.

The number of vehicular trips expected to be generated by the potential alternative option for developing the Tesco site is based on analysis using the TRICS database and is shown in the table below. Appendix C shows the detailed TRICS assessment reports.

Table 3-1 - Indicative Alternative Development on Tesco - Vehicle Trip Generation

| Development | Trip Generation (PCUs per Hour) | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | AM Peak Trips | | | PM Peak | | Trips |
| | | In | Out | Total | In | Out | Total |
| Retirement homes | | 5 | 4 | 9 | 2 | 3 | 5 |
| Flats (privately owned) | | 2 | 7 | 9 | 6 | 3 | 9 |
| Retail Park (non-food) | Residential | 22 | 10 | 32 | 17 | 24 | 41 |
| Drive-thru restaurant | Restaurant | 11 | 5 | 16 | 27 | 29 | 56 |
| Public House | Restaurant | 0 | 0 | 0 | 13 | 10 | 23 |

3.3 Committed and Proposed Developments

The following committed and proposed developments are included for all the assessment scenarios excluding Reference Case B and Option 7.

- Holdingham and alterations to A15/A17 (Holdingham Roundabout)
- Bass Maltings
- Sleaford South (Handley Chase)
- Sleaford West
- Grantham Road (both residential and employment)
- Pride Parkway
- King Edward Street

Reference Case B and Option 7 only include the following committed developments

- Holdingham and alterations to A15/A17 (Holdingham Roundabout)
- Sleaford South (Handley Chase)
- King Edward Street

The trips rates for these committed/proposed developments have been obtained from previous work undertaken to assess the SESRR scheme and are summarised below.

Table 3-2 - Committed/Proposed Development - Vehicle Trip Generation

Development Site	Morning peak			Evening peak		
	In	Out	Total	In	Out	Total
Holdingham	37	138	175	113	90	203
Bass Maltings	191	103	294	94	174	268
Sleaford South (Handley Chase)	256	525	781	558	342	900
Sleaford West	630	807	1437	678	578	1256
Grantham Road	385	130	515	112	343	455
Pride Parkway	376	88	464	58	309	367
King Edward Street	20	68	88	67	34	101
Total	$\mathbf{1 , 8 9 5}$	$\mathbf{1 , 8 5 9}$	$\mathbf{3 , 7 5 4}$	$\mathbf{1 , 6 8 0}$	$\mathbf{1 , 8 7 0}$	$\mathbf{3 , 5 5 0}$

These trips have been accounted for when calculating the traffic growth in the Sleaford model while ensuring that the total number of trips in the forecast matrices does not exceed the overall TEMPRO growth forecast.

In addition to the above developments, consideration was given to any proposals for the current Turnbull's site on South Gate. No specific details of any future land use proposals have been provided by or on behalf of Turnbull. However, it has been indicated that any future development of the site is likely to have less traffic impact than the current use. It has therefore been assumed, for the purposes of the modelling, that the current land use, and therefore trip generation already included in the base model, represents a worst case for the traffic generation of the site and no amendments have been made in the Reference Cases or Do-Something scenarios.

4 Highway Impacts: Part A - Reference Cases

This section summarises the performance of the highway network for the Reference Case A1, A0 and B scenarios for the AM (08:00-09:00) and PM (17:00-18:00) peak hours for year 2022.

4.1 Overall Traffic Model Network Performance Statistics

The network statistics quoted in this and later sections refer to the area of the network modelled in detail (the simulation network), which broadly comprises the area shown in Figure 3-1.

Table 4-1 below summarises the overall network performance statistics as generated by the model for Reference Case A1 for the AM and PM peak hour in year 2022.

Table 4-1 - Network Performance - Reference Case A1 AM \& PM Peak Hour - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu $\mathrm{hr})$	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)	Total Trips on Network (pcu)
AM peak hour	$46,903.8$	$1,519.7$	393.1	293.6	$69,577.5$
PM peak hour	$45,163.3$	$1,470.2$	392.9	258.4	$67,876.1$

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only

The results show that AM peak hour generates higher total distance travelled, total trips on the network, total travel time, transient queueing and over-capacity queueing compared to the PM peak hour.

Table 4-2 below summarises the overall network performance statistics as generated by the model for the Reference Case B scenario for the AM and PM peak hour in year 2022.

Table 4-2 - Network Performance - Reference Case B AM \& PM Peak Hour - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)	Total Trips on Network (pcu)
AM peak hour	$41,505.4$	$1,077.3$	239.6	130.8	$68,982.1$
PM peak hour	$41,170.7$	$1,078.2$	246.1	113.2	$67,366.6$

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only

The results show that AM peak hour generates higher total distance travelled, total trips on the network and over-capacity queueing compared to the PM peak hour, while the PM peak hour generates slightly higher total travel time and transient queueing compared to the AM peak hour.

4.2 Changes in Traffic Flows

Traffic flow diagrams from the SATURN traffic model are presented in Appendix D, showing traffic flows for the town centre for all the scenarios for both the AM and PM peaks.

4.3 Journey Times

Journey times for selected routes across Sleaford have been summarised for Reference Case A1 and B in the table below for the AM and PM peak hours.

The five routes are shown on Figure 2-1 in Section 2 above.

Table 4-3 - Journey Time - Ref. Cases A1 \& B AM \& PM Peak Hour (mm:ss) - 2022

Route		Dir	Journey Time Reference Case A1		Journey Time Reference Case B		
		AM peak hour	PM peak hour	AM peak hour	PM peak hour		
1	Mareham Lane to Holdingham Roundabout		SE - N	22:49	20:22	18:37	14:47
	Holdingham Roundabout to Mareham Lane	N - SE	24:09	28:34	17:48	21:51	
2	London Road/Gorse Lane to East Road/Pride Parkway	S - NE	22:16	17:48	18:50	13:49	
	East Road/Pride Parkway to London Road/Gorse Lane	NE - S	18:26	21:05	13:28	17:25	
3	A15/Grantham Road to A17/Boston Road	W-E	23:15	19:47	19:17	14:42	
	A17/Boston Road to A15/Grantham Road	E-W	13:46	17:05	11:16	15:47	
4	A15/Grantham Road to East Road/Pride Parkway (Via King Edward Street)	W-NE	21:20	18:13	17:38	13:39	
	East Road/Pride Parkway to A15/Grantham Road	NE - W	15:24	20:13	12:20	16:24	
5	A15/London Road to A17/East Road (Via A15 and A17)	SW - NE	07:18	07:14	08:29	06:36	
	A17/East Road to A15/London Road (Via A17 and A15)	NE - SW	05:36	11:49	05:00	07:38	

4.4 Comparison of Reference Cases A1 and AO

The following tables present a comparison of Reference Cases A1 and A0 which represent the situations with future forecast level crossing downtimes (Reference Case A1) and with current level crossing downtimes (Reference Case A0). The table below shows that the forecast increased downtimes will increase travel time by 7.7% in the AM peak hour and 5.5% in the PM peak hour while over-capacity queuing will almost double with the forecast increases in downtimes.

Table 4-4 - Comparison of Reference Cases A1 and AO - Network Statistics - 2022

Peak Hour	Scenario	Total Distance Travelled $($ pcu km)	Total Travel Time $(p c u ~ h r)$	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)	Total Trips on Network (pcu)
AM Peak	A1 - Future Downtimes	$46,903.8$	$1,519.5$	393.1	293.6	$69,577.5$
	A0 - Current Downtimes	$47,962.3$	$1,411.4$	405.3	160.8	$69,577.5$
PM Peak	A1 - Future Downtimes	$45,163.3$	$1,470.2$	392.9	258.4	$67,876.1$
	A0 - Current Downtimes	$46,115.7$	$1,393.6$	429.0	132.5	$67,876.1$

The following table shows the change in travel times between Reference Cases A1 and AO for the AM and PM peak hours. The data shows that there would be significant journey time increases as a result of the increases in level crossing downtimes amounting to an average 30\% increase in the AM peak hour for the routes analysed and 33% in the PM peak hour.

Table 4-5 - Comparison of Reference Cases A1 and A0 - Journey Times - 2022

Description		Direction	AM Peak hour		PM Peak hour		
		A0 Current Downtimes	A1 Future Downtimes	A0 Current Downtimes	A1 Future Downtimes		
1	Mareham Lane to Holdingham Roundabout		SE-N	15:49	22:49	14:18	20:22
	Holdingham Roundabout to Mareham Lane	N - SE	19:36	24:09	23:33	28:34	
2	London Road/Gorse Lane to East Road/Pride Parkway	S - NE	15:44	22:16	12:42	17:48	
	East Road/Pride Parkway to London Road/Gorse Lane	NE - S	14:07	18:26	16:25	21:05	
3	A15/Grantham Road to A17/Boston Road	W-E	16:29	23:15	14:39	19:47	
	A17/Boston Road to A15/Grantham Road	E-W	09:35	13:46	11:11	17:05	
4	A15/Grantham Road to East Road/Pride Parkway (Via King Edward Street)	W-NE	14:52	21:25	12:37	18:13	
	East Road/Pride Parkway to A15/Grantham Road	NE - W	11:45	15:24	15:27	20:13	
5	A15/London Road to A17/East Road (Via A15 and A17)	SW - NE	08:10	07:18	06:50	07:14	
	A17/East Road to A15/London Road (Via A17 and A15)	NE - SW	05:04	05:36	09:10	11:49	
Average Percentage Change			30\%		33\%		

5 Highway Impacts: Part B - Do-Something Options

This section summarises the outputs from the modelling of Options 1 to 6 and Options 9a and 9b.

The statistics in this section compare the modelling results for each option to Reference Case A1 and figures highlighted in green denote an improvement in performance and red a worsening of performance. The statistics for Reference Case A0 (with existing level crossing downtimes) are also provided for comparison.
5.1 Overall Traffic Model Network Performance Statistics

Table 5-1 below summarises the overall network performance statistics as generated by the model for each option for the AM peak hour in year 2022. Of primary interest in this table are the figures for over-capacity queuing which indicate the amount of time spent by traffic queuing at junctions operating above their capacity.

Table 5-1 - Network Performance - AM Peak Hour - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)	\% Change in Over Capacity Queueing
Reference Case A0	$47,962.3$	$1,411.4$	405.3	160.8	-
Reference Case A1	$46,903.8$	$1,519.5$	393.1	293.6	-
Option 1	$47,710.4$	$1,535.2$	434.5	255.7	-13%
Option 2	$47,298.9$	$1,516.5$	415.4	274.2	-7%
Option 3	$46,559.7$	$1,533.9$	410.4	297.9	1%
Option 4a	$47,114.9$	$1,542.8$	390.8	328.2	12%
Option 4b	$46,581.3$	1528.5	407.5	302.5	3%
Option 5	$46,448.1$	$1,531.6$	409.8	298.1	2%
Option 6	$51,234.6$	$1,402.7$	374.6	176.6	-40%
Option 9a	$48,531.9$	$1,644.4$	450.3	342.3	17%
Option 9b	$49,016.2$	1,789	487.4	435.3	48%

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only Note: Green shading denotes an improvement compared to Reference Case A1 and Red a worsening of performance

The table above shows that Option 6, which includes the introduction of a Sleaford Southern Distributor Road (SSDR) has the most significant impact on reducing overcapacity queuing, with a reduction of 40% in the AM peak hour. Options 1 and 2 , with the SESRR Phase 1 and SESRR Phases 1 and 2 respectively, and both with the South Gate level crossing closed, are the only other options to generate reduced
over-capacity queueing, with reductions of 13% and 7% in the AM peak hour respectively.

Options 3 through to 5 are variations on providing access to the Tesco site, as well as providing access to the Maltings site via Mareham Lane. None of these options include a bridge across the railway line and the South Gate level crossing remains open. All four of these options show a worsening performance of the network with 4a having the worst network impacts. 4a and 4b include the provision of SESRR Phase 2 and the two way operation of East Gate between South Gate and Carre Street. 4 b is an improvement on 4 a due to the two-way operation of Boston Road between South Gate and Carre Street.

Options 9a and 9b, including the pedestrianisation of South Gate, between Boston Road and Water Gate, and Boston Road and East Gate respectively, generate the most significant worsening of network performance.

Table 5-2 - Network Performance - PM Peak Hour - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)	\% Change in Over Capacity Queueing
2022 Reference Case A0	$46,115.7$	$1,393.6$	429.0	132.5	-
2022 Reference Case A1	$45,163.3$	$1,470.2$	392.9	258.4	-
Option 1	$46,566.9$	$1,487.3$	429.4	212.3	-18%
Option 2	$46,437.8$	1,486	458.9	185.2	-28%
Option 3	$45,192.3$	$1,498.6$	405.3	274.6	6%
Option 4a	$45,194.7$	$1,602.4$	443.2	344.7	33%
Option 4b	$46,581.3$	$1,528.5$	407.5	302.5	17%
Option 5	$44,960.9$	$1,492.3$	413.5	263.8	2%
Option 6	$50,666.6$	$1,316.8$	362.8	99.6	-61%
Option 9a	$48,531.9$	$1,644.4$	450.3	342.3	32%
Option 9b	$49,016.2$	$1,789.0$	487.4	435.3	68%

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only Note: Green shading denotes an improvement compared to Reference Case A1 and Red a worsening of performance.

The modelling results for the PM peak hour show significantly greater impacts than the AM peak. Option 6, the SSDR, again shows the greatest benefits with overcapacity queueing reducing by 61%. Options 1 and 2 also show greater benefits than in the AM peak hour with reductions in over-capacity queueing of 18% and 28% respectively.

The most significant worsening of performance is shown by Options 9a, 9b and 4a. Option 9b increases over-capacity queueing by 68% with Option 9a increasing it by 32%. Option 4 a also increases over-capacity queueing by over 30% and while 4b, adding the two-way operation of Boston Road to Option 4a, would reduce this level of queuing, it would still lead to a 17% increase.

Similarly to the AM peak hour, Options 3 and 5 have significantly lower increases in over-capacity queueing. However, this needs to be considered in the context of already increased queuing as a result of the significantly longer level crossing down times (i.e. the difference between Reference Cases A0 and A1).

5.2 Changes in Traffic Flows

Traffic flow diagrams from the traffic model are presented in Appendix D, showing traffic flows for the town centre for all the scenarios for both the AM and PM peaks.

5.3 Journey Times

Journey times for selected routes across Sleaford have been compared between the Reference Case A1 and Do-Something Scenarios. The five routes are shown on Figure 2-1 in Section 2 above.

For the majority of the journeys made on these routes, drivers will have a choice of routes with the A15/A17 bypass being a realistic alternative in many cases. A number of the routes show considerable increases in journey times between the options and the Reference Cases, resulting from greater journey distance, greater delays at some existing junctions and the need to pass through a number of new junctions, each of which will individually cause some delay.

The following table compares the journey times for Reference Case A1 with the various option scenarios assessed as part of the LCC assessment options, for the AM peak. The journey times for Reference Case A0 are also included for information. Times highlighted in light green show improvements compared to Reference Case A1 and those highlighted in red show worsening of performance compared to Reference Case A1. Times highlighted in dark green are those that show improvements compared to Reference Case A0 (with existing level crossing downtimes).

With the exception of Journey 5, the routes used in this analysis pass through the town centre, either via South Gate or King Edward Street level crossings. Option 9b will result in changes to the highway network that prevent routes passing through the town centre in the northbound direction across the level crossings; these routes have therefore been discounted from the analysis for Option 9b.

The results of journey analysis show that in the AM peak hour, Option 6, the introduction of the SSDR, improves journey times substantially through the town centre. Those journey times highlighted in dark green represent routes that are quicker than both Reference Case A1 and A0, AO being the scenario with existing level crossing downtimes. Overall, on average, Option 6 reduces the journey times
on analysed routes by nearly 13% in the AM peak hour. Options 1 and 2 also provide benefits to journey times with average reductions in journey times across routes analysed of 6.24% and 8.6% respectively.

Sleaford Regeneration Area Modelling
Traffic Modelling Report

Lincolnshire
HIGHWAYS ALLIANCE

Table 5-3 - Journey Time - AM Peak (mm:ss) - 2022

	Route	Dir	Reference Case		Options								
			A0	A1	1	2	3	4a	4b	5	6	9 a	9b
1	Mareham Lane to Holdingham Roundabout	SE - N	15:49	22:49	16:35	16:31	23:25	21:38	22:01	23:34	18:24	32:03	N/A
	Holdingham Roundabout to Mareham Lane	N-SE	19:36	24:09	22:13	22:53	22:59	23:05	23:21	23:01	19:32	31:20	31:59
2	London Road/Gorse Lane to East Road/Pride Parkway	S - NE	15:44	22:16	21:22	20:05	22:41	25:11	23:51	22:49	18:05	29:20	N/A
	East Road/Pride Parkway to London Road/Gorse Lane	NE - S	14:07	18:26	18:40	17:00	17:34	17:46	18:04	17:36	13:51	20:05	20:10
3	A15/Grantham Road to A17/Boston Road	W-E	16:29	23:15	17:19	18:48	23:59	26:46	22:41	24:05	19:34	29:55	N/A
	A17/Boston Road to A15/Grantham Road	E-W	09:35	13:46	13:32	13:18	15:02	14:04	14:22	15:03	12:52	16:10	17:06
4	A15/Grantham Road to East Road/Pride Parkway (Via King Edward Street)	W - NE	14:52	21:25	20:52	20:23	21:53	25:06	22:59	21:57	17:33	28:38	N/A
	East Road/Pride Parkway to A15/Grantham Road	NE - W	11:45	15:24	15:40	13:52	14:25	14:29	14:50	14:20	11:32	17:11	18:09
5	A15/London Road to A17/East Road (Via A15 and A17)	SW - NE	08:10	07:18	07:28	07:45	07:52	07:33	07:19	07:55	08:38	08:02	08:38
	A17/East Road to A15/London Road (Via A17 and A15)	NE - SW	05:04	05:36	05:41	05:21	05:40	05:11	05:22	05:41	05:41	06:14	05:43
Average Percentage Change					-6.24\%	-8.60\%	1.21\%	2.44\%	0.23\%	1.49\%	-12.79\%	25.24\%	N/A

Note: Green shading denotes an improvement compared to Reference Case A1 and Red a worsening of performance

Options 9a and 9b have the worst performance in terms of journey times on the five routes analysed with $9 b$ being the most poorly performing on the routes that remain possible. Option 9a generates an average increase in journey times on the analysed routes of 25.24%.

Options 3 to 5 have a less significant impact on journey times with average increases on the routes analysed of between 0.23% and 2.44%. Option 4b, which included the addition of the two-way operation of Boston Road between South Gate and Carre Street to Option 4a, shows better performance than 4a.

The following table presents journey time information for the PM peak hour and shows that the changes are more significant than in the AM peak hour. Again Option 6 (the SSDR) shows significant reductions in journey times and a number of routes will be quicker than Reference Case A 0 as well as A1. The average change in journey times on the routes analysed was a reduction of over 21% for Option 6.

Options 1 and 2, the introduction of the SESRR Phase 1 and SESRR Phases 1 and 2 respectively, and both with the South Gate level crossing closed, resulted in significant reductions in journey times on the routes analysed and greater reductions than in the AM peak hour. Options 1 and 2 generate average reductions in journey times of 11.6% and 14.4% respectively in the PM peak hour. Option 2 , similarly to Option 6, reduces journey times on some routes to below those of Reference Case A0 which uses the current level crossing downtimes.

Options 9a and 9b again generate the worst journey times across the five routes with Option 9a increasing journey times by nearly 52%. On the routes that remain open, Option 9b has longer journey times than 9a.

Options 3 to 5 , as is the case for the other options, have poorer performance in the PM peak hour. Option 5 increases journey times by an average of 2%, Option 3 by 3% and Option $4 a$ by nearly 16%. By comparison, Option 4b, which adds the twoway operation of Boston Road, between South Gate and Carre Street to Option 4a, increases journey times by 5.4\%

Sleaford Regeneration Area Modelling
Traffic Modelling Report

Lincolnshire
HIGHWAYS ALLIANCE

Table 5-4 - Journey Time - PM Peak (mm:ss) - 2022

	Route	Dir	Reference Case		Options								
			A0	A1	1	2	3	4a	4b	5	6	9 a	9b
1	Mareham Lane to Holdingham Roundabout	SE - N	14:18	20:22	14:54	17:38	20:03	22:01	21:22	20:16	15:51	32:00	N/A
	Holdingham Roundabout to Mareham Lane	N - SE	23:33	28:34	23:03	23:07	28:37	27:39	27:39	28:38	22:28	42:34	42:53
2	London Road/Gorse Lane to East Road/Pride Parkway	S - NE	12:42	17:48	18:08	19:17	17:42	22:11	20:08	17:52	13:56	26:42	N/A
	East Road/Pride Parkway to London Road/Gorse Lane	NE - S	16:25	21:05	17:52	14:23	20:51	20:16	20:28	20:54	15:37	30:29	30:37
3	A15/Grantham Road to A17/Boston Road	W-E	14:39	19:47	14:45	18:24	20:26	29:40	19:36	20:26	15:55	28:22	N/A
	A17/Boston Road to A15/Grantham Road	E-W	11:11	17:05	12:46	12:35	18:23	19:08	19:16	18:26	13:29	29:27	29:47
4	A15/Grantham Road to East Road/Pride Parkway (Via King Edward Street)	W - NE	12:37	18:13	18:12	20:32	18:04	32:53	25:52	18:14	14:11	26:06	N/A
	East Road/Pride Parkway to A15/Grantham Road	NE - W	15:27	20:13	17:10	13:37	19:59	19:31	19:39	19:57	14:38	29:58	30:23
5	A15/London Road to A17/East Road (Via A15 and A17)	SW - NE	06:50	07:14	07:15	07:19	07:14	07:42	07:27	07:14	06:59	07:41	09:38
	A17/East Road to A15/London Road (Via A17 and A15)	NE - SW	09:10	11:49	12:55	07:37	14:42	10:18	10:32	13:16	08:17	23:13	22:11
Average Percentage Change					-11.59\%	-14.36\%	3.03\%	15.83\%	5.40\%	2.15\%	-21.29\%	51.80\%	N/A

Note: Green shading denotes an improvement compared to Reference Case A1 and Red a worsening of performance

6 Highway Impacts: Part C - Option 7

This section summarises the outputs from the modelling of Option 7, which is compared to Reference Case B. As explained previously, Reference Case A1 is used for comparison for all options with the exception of Option 7. Option 7 is assessing the impact of delivering the Maltings development, alongside a significantly reduced level of committed development, therefore, a second reference case, ' B ', has been developed purely for this option.
6.1 Overall Traffic Model Network Performance Statistics

Table 6-1 below summarises the overall network performance statistics as generated by the model for Option 7 and Reference Case B for the AM peak hour in year 2022.

Table 6-1 - Network Performance - Option 7 AM Peak Hour - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)	\% Change in Over Capacity Queueing
Reference Case B	$41,505.40$	$1,077.30$	239.60	130.80	
Option 7	$42,374.00$	$1,134.10$	260.60	144.80	11%

Notes: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only Note: Green shading denotes an improvement compared to Reference Case B and Red a worsening of performance

The results show that, compared to Reference Case B, for the AM peak hour, Option 7 generates higher total travel distance, total travel time, transient queueing, overcapacity queueing and total trips on the network, indicating that the vehicles have to travel further to reach their destinations due to congestion at some junctions on the network. Over Reference Case B, Option 7 shows an increase of around 2% in the total distance travelled by vehicles and increase of 0.04% in the total trips on the network. Option 7 also shows increase of around 5.27% in total travel time while the transient queuing and over-capacity queuing show an increase of around 8.76% and 10.7% respectively compared to Reference Case B.

Table 6-2 below summarises the overall network performance statistics as generated by the model for Option 7 and Reference Case B for the PM peak hour in year 2022.

Table 6-2 - Network Performance - Options 7 PM Peak Hour - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)	Change in Over Capacity Queueing
Reference Case B	$41,170.70$	$1,078.20$	246.10	113.20	
Option 7	$42,094.50$	$1,141.20$	278.90	120.70	7%

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only Note: Green shading denotes an improvement compared to Reference Case B and Red a worsening of performance

The results show that, compared to Reference Case B, for the PM peak hour, Option 7 generates higher total travel distance, total travel time, transient queueing, overcapacity queueing and total trips on the network, indicating that the vehicles have to travel further to reach their destinations due to congestion at some junctions on the network. Over Reference Case B, Option 7 shows an increase of around 2% in the total distance travelled by vehicles and increase of 0.04% in the total trips on the network. Option 7 also shows increase of around 5.84% in total travel time while the transient queuing and over-capacity queuing show an increase of around 13.3\% and 6.63% respectively compared to Reference case B.

6.2 Changes in Traffic Flows

Traffic flow diagrams from the SATURN traffic model are presented in Appendix C, showing traffic flows for the town centre for all the scenarios for both the AM and PM peaks for Options 7.

6.3 Journey Times

Journey times for selected routes across Sleaford have been compared between the respective Reference Case and Do-Something Scenarios. The five routes are shown on Figure 2-1 in Section 2 above.

The following table summarises the journey times for the Option 7, for the AM peak.

Table 6-3 - Journey Time - AM Peak (mm:ss) - Option 7-2022

Route		Dir	Journey Time		
		Ref Case B	$\begin{aligned} & \text { Option } \\ & 7 \end{aligned}$		
1	Mareham Lane to Holdingham Roundabout		SE-N	18:37	20:01
	Holdingham Roundabout to Mareham Lane	N -SE	17:48	20:23	
2	London Road/Gorse Lane to East Road/Pride Parkway	S - NE	18:50	19:12	
	East Road/Pride Parkway to London Road/Gorse Lane	NE - S	13:28	14:49	
3	A15/Grantham Road to A17/Boston Road	W-E	19:17	19:40	
	A17/Boston Road to A15/Grantham Road	E-W	11:16	12:24	
4	A15/Grantham Road to East Road/Pride Parkway (Via King Edward Street)	W - NE	17:38	18:03	
	East Road/Pride Parkway to A15/Grantham Road	NE - W	12:20	13:36	
5	A15/London Road to A17/East Road (Via A15 and A17)	SW - NE	08:29	08:42	

A17/East Road to A15/London Road (Via A17 and A15)	NE - SW	$05: 00$	$05: 05$	
Average Percentage Change			-	6.29%

Note: Green shading denotes an improvement compared to Reference Case B and Red a worsening of performance

In the AM peak hour, compared to the Reference Case B, Option 7 shows an increase in journey time across all the routes. The increase in journey times for all other routes is of around one to two minutes, except for Route 2 northbound, Route 5 eastbound and Route 5 westbound where the decrease is of 22 seconds, 13 seconds and 5 seconds respectively implying that is an increase in congestion which causes an increase in journey times along these routes.

The above table shows that on average, across the routes assessed, journey times were 6.29% slower in the AM peak for Option 7.

The following table compares the journey times for Option 7, for the PM peak.
Table 6-4 - Journey Time - PM Peak (mm:ss) - Option 7-2022

Route*		Dir	Journey Time		
		Ref Case B	$\begin{gathered} \text { Option } \\ 7 \end{gathered}$		
1	Mareham Lane to Holdingham Roundabout		SE - N	14:47	16:39
	Holdingham Roundabout to Mareham Lane	N-SE	21:51	23:41	
2	London Road/Gorse Lane to East Road /Pride Parkway	S - NE	13:49	14:40	
	East Road/Pride Parkway to London Road /Gorse Lane	NE - S	17:25	17:43	
3	A15/Grantham Road to A17/Boston Road	W-E	14:42	15:33	
	A17/Boston Road to A15/Grantham Road	E-W	15:47	16:08	
4	A15/Grantham Road to East Road/Pride Parkway (Via King Edward Street)	W-NE	13:39	14:34	
	East Road/Pride Parkway to A15/Grantham Road	NE - W	16:24	16:46	
5	A15/London Road to A17/East Road (Via A15 and A17)	SW - NE	06:36	06:43	
	A17/East Road to A15/London Road (Via A17 and A15)	NE - SW	07:38	07:41	
Average Percentage Change			-	4.83\%	

Note: Green shading denotes an improvement compared to Reference Case B and Red a worsening of performance

In the PM peak hour, compared to the Reference Case B, Option 7 shows an increase in journey time across all the routes. The increase in journey times for all
other routes is of around 7 seconds to two minutes implying that is an increase in congestion which causes an increase in journey times along these routes.

The above table shows that on average, across the routes assessed, journey times were 4.83% slower in the AM peak for Option 7.

7 Summary and Conclusions

7.1 Summary

Mouchel Consulting, working as part of Lincolnshire County Council Highways Alliance, has been appointed by the County Council (LCC) and North Kesteven District Council (NKDC) to undertake traffic modelling using Sleaford Traffic Model to help gain an understanding of various access strategies for the Sleaford Regeneration Area following the withdrawal of proposals for a new Tesco development.

The assessment considers a forecast year of 2022 for the AM and PM peak hours. As part of the assessments in addition to three Reference Cases, 11 options for altering the highway network have been assessed, including 'a' and 'b' versions of two options. All options were compared with Reference Case A1 with the exception of Option 7 which was compared against Reference Case B only.

In the assessments, the development trips for the Tesco site have been generated using the development quantum for the potential alternative proposals for the site. It should be noted that Tesco continues to own the site and ultimately, the development proposals will be promoted by them.

The results for the majority of options are summarised in Part A below, while the results for Option 7 are summarised in Part B.

7.2 Part A - Summary of Results

The SATURN model for Sleaford predicts that the total travel distance, total travel time, transient and over-capacity queuing will vary depending on the nature of the interventions for each scenario.

Tables 7-1 and 7-2 below shows the change in various network parameters between each scenario and the Reference Case A1 for the AM and PM peak hours. Of particular interest are the figures for over-capacity queueing.

Table 7-1 - Network Performance Percentage Change - AM Peak - 2022

Scenario	Total Distance Travelled (pcu $\mathrm{km})$	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)
Option 1	1.72%	1.03%	10.53%	-12.91%
Option 2	0.84%	-0.20%	5.67%	-6.61%
Option 3	-0.73%	0.95%	4.40%	1.46%
Option 4a	0.45%	1.53%	-0.59%	11.78%
Option 4b	-0.69%	0.59%	3.66%	3.03%
Option 5	-0.97%	0.80%	4.25%	1.53%
Option 6	9.23%	-7.69%	-4.71%	-39.85%
Option 9a	3.47%	8.22%	14.55%	16.59%
Option 9b	4.50%	17.74%	23.99%	48.26%

Table 7-2 - Network Performance Percentage Change - PM Peak - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over Capacity Queueing (pcu hr)
Option 1	3.11%	1.16%	9.29%	-17.84%
Option 2	2.82%	1.07%	16.80%	-28.33%
Option 3	0.06%	1.93%	3.16%	6.27%
Option 4a	0.07%	8.99%	12.80%	33.40%
Option 4b	3.14%	3.97%	3.72%	17.07%
Option 5	-0.45%	1.50%	5.24%	2.09%
Option 6	12.19%	-10.43%	-7.64%	-61.47%
Option 9a	7.46%	11.85%	14.61%	32.47%
Option 9b	8.53%	21.68%	24.05%	68.46%

Option 6, the implementation of the Sleaford Southern Distributor Road, has the most significant positive impacts on the highway network with considerable reductions in travel time and over-capacity queueing.

It can be observed from the above tables that for the AM and PM peak hour, Options 1 and 2 where the South Gate crossing is closed and SESRR is operational, the total distance travelled and total travel time increases slightly but there is also a considerable reduction in the over-capacity queuing, the main indicator of interest. This indicates that even though the traffic has to travel further, there is less congestion in the network compared to the Reference Case. Option 1 and 2 also show decreases in journey time along most of the journey time routes.

In Options 3, 4 and 5 where the railway crossing at South Gate is operational and there is no SESRR link over the railway, there is slight reduction in total distance travelled on the network, but an increase in total travel time and considerable increase in over-capacity queuing. The journey times along the analysed routes mostly show an increase for Option 3, 4 and 5.

Options 9 a and 9 b show very significant deteriorations of network performance resulting from the closure of South Gate to traffic between Boston Road and Water Gate, and Boston Road and East Gate respectively. The implementation of 9b would mean that it would not be possible to travel northbound through the town centre, resulting in all traffic having to use the A15 and A17 bypasses.

7.3 Part B - Summary of results for Option 7

Tables 7-3 and 7-4 below show the change in various network parameters between Option 7 and Reference Case B for the AM and PM peak hours.

Table 7-3 - Network Performance Percentage Change - AM Peak Option 7-2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu $\mathrm{hr})$	Transient Queueing (pcu $\mathrm{hr})$	Over Capacity Queueing (pcu hr)
Option 7	2.09%	5.27%	8.76%	10.70%

Table 7-4 - Network Performance Percentage Change - PM Peak Option 7 - 2022

Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu $\mathrm{hr})$	Over Capacity Queueing (pcu hr)
Option 7	2.24%	5.84%	13.33%	6.63%

In the AM peak hour the total travel distance will increase in Option 7 by 2\% over the Reference Case B, while total travel time and transient queuing will increase by around 5.27% and 8.76% respectively. The over-capacity queuing will also increase by around 10.70% over Reference Case B.

In the PM peak hour the total travel distance will increase in Option 7 by 2.24% over the Reference Case B, while total travel time and transient queueing will increase by 5.84% and 13.33% respectively. The over-capacity queuing will also increase by around 6.63% over Reference Case B.

In Option 7, the journey times along all routes show an increase in journey times by around 7 seconds to 2 minutes in the AM and PM peak hours over Reference case B.

7.4 Costings

The following table provides outline cost estimates for each of the options.

Table 7-5 - Outline Cost Estimates

Option	Cost Range
1	$£ 5 \mathrm{~m}$ to $£ 20 \mathrm{~m}$
2	Over $£ 20 \mathrm{~m}$
3	Up to $£ 1 \mathrm{~m}$
4 a	$£ 1 \mathrm{~m}$ to $£ 5 \mathrm{~m}$
4 b	$£ 1 \mathrm{~m}$ to $£ 5 \mathrm{~m}$
5	$£ 1 \mathrm{~m}$ to $£ 5 \mathrm{~m}$
6	Over $£ 20 \mathrm{~m}$
7	$£ 1 \mathrm{~m}$ to $£ 5 \mathrm{~m}$
7	Over $£ 20 \mathrm{~m}$
8	Up to $£ 1 \mathrm{~m}$
9 a	Up to $£ 1 \mathrm{~m}$
9 b	

7.5 Conclusion

The traffic analysis undertaken assesses not only the impact of the increased length of railway crossing closures (assessed as a worst case) but the combined impact of other network interventions including SESRR and the bringing forward of a range of land use developments.

The results of the analysis should therefore be taken as providing an insight, in traffic terms, into the combined potential impacts of all of these highway network changes and developments and not of any individual element alone. Caution should therefore be used in attributing impacts to any individual element of the various scenarios.

Based on the network and journey time statistics, the following Tables 7-5 and 7-6 summarise the operation of the various combinations of options assessed for the AM and PM peak hours respectively compared to the Reference Case. For the purposes of this comparison, changes of between -5.00% and 5.00% have been categorised as slight, changes of between -5.00% and -10.00% and between 5.00% and 10.00% have been categorised as moderate and greater than either plus or minus 10.00% have been categorised as large. The overall result of the comparison has been assessed based primarily on over-capacity queuing and journey time routes assessment with the other indicators given less prominence.

The rating system has been developed for this report and can be used a guide to the level of impact of that each option will have and is a broad aid to understanding and decision-making. The ratings are not related to the 'severity' test set out in the National Planning Policy Framework.

Table 7-6 - Network Statistic Comparison - AM Peak - 2022

Option	Total Travel distance	Total Travel times	Transient Queuing	Over Capacity Queuing	Journey Time	Overall
Option 1	Slight Adverse	Slight Adverse	Large Adverse	Large Beneficial	Moderate Beneficial	Moderate Beneficial
Option 2	Slight Adverse	Slight Beneficial	Moderate Adverse	Moderate Beneficial	Moderate Beneficial	Moderate Beneficial
Option 3	Slight Beneficial	Slight Adverse				
Option 4a	Slight Adverse	Slight Adverse	Slight Beneficial	Large Adverse	Slight Adverse	Moderate Adverse
Option 4b	Slight Adverse					
Optight 6	Slight Adverse					
Opderate	Moderate Adverse	Slight Beneficial	Large Beneficial	Large Beneficial	Large Beneficial	
Adverse	Slight	Moderate	Large Adverse	Large Adverse	Large Adverse	Large Adverse

| Option 9b | Slight
 Adverse | Large
 Adverse |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 7-5 above, shows that for the AM peak hour the closure of South Gate level crossing and opening of SESRR has a slight to moderate positive impact on the operation of the network. Whereas with the South Gate crossing operational along with the other network interventions, the operation of the networks in Options 3, 4 and 5 show slight to large adverse impacts compared to the Reference Case.

Table 7-7 - Network Statistic Comparison - PM Peak - 2022

Option	Total Travel distance	Total Travel times	Transient Queuing	Over Capacity Queuing	Journey Time	Overall
Option 1	Slight Adverse	Slight Adverse	Moderate Adverse	Large Beneficial	Large Beneficial	Large Beneficial
Option 2	Slight Adverse	Slight Adverse	Large Adverse	Large Beneficial	Large Beneficial	Large Beneficial
Option 3	Slight Adverse	Slight Adverse	Slight Adverse	Moderate Adverse	Slight Adverse	Slight Adverse
Option 4a	Slight Adverse	Moderate Adverse	Large Adverse	Large Adverse	Large Adverse	Large Adverse
Option 5	Slight Adverse	Slight Adverse	Slight Adverse	Large Adverse	Moderate Adverse	Moderate Adverse
Option 6	Large Adverse	Moderate Adverse	Slight Adverse	Slight Adverse	Slight Adverse	
Option 9a	Moderate Adverse	Moderate Beneficial	Large Adverse	Large Adiverse	Large Adverge	Large Beneficial
Beneficial						

Table 7-6 above, shows that for the PM peak hour the closure of South Gate railway crossing and opening of SESRR primarily has a moderate positive impact on the operation of the network. Whereas with the South Gate crossing operational along with the other network interventions, the operation of the networks in Options 3, 4 and 5 show moderate to large adverse impacts compared to the Reference Case A1.

Based on the network statistics, the following Tables 7-7 and 7-8 summarise the operation Option 7 in the AM and PM peak hours compared to the Reference Case B and A respectively.

Table 7-8 - Network Statistic Comparison - AM Peak Option 7-2022

Option	Total Travel distance	Total Travel times	Transient Queuing	Over Capacity Queuing	Journey Time	Overall
Option 7	Slight Adverse	Moderate Adverse	Moderate Adverse	Large Adverse	Moderate Adverse	Moderate Adverse

Table 7-9 - Network Statistic Comparison - PM Peak Option 7-2022

Option	Total Travel distance	Total Travel times	Transient Queuing	Over Capacity Queuing	Journey Time	Overall
Option 7	Slight Adverse	Moderate Adverse	Large Adverse	Moderate Adverse	Slight Adverse	Moderate Adverse

Tables 7-7 and 7-8 above show that for the AM and PM peak hour Option 7 has a moderate adverse impact on the operation of the network.

Overall the result of the analysis shows the following conclusion for each option:

- Option 1 - Moderate/Large Beneficial
- Option 2 - Moderate/Large Beneficial
- Option 3 - Slight Adverse
- Option 4a - Moderate/Large Adverse
- Option 4b - Slight/Moderate Adverse
- Option 5 - Slight Adverse
- Option 6 - Large Beneficial
- Option 7 - Moderate Adverse
- Option 8 - Not Assessed
- Option 9a - Large Adverse
- Option 9b - Large Adverse

It should be noted that the Reference Cases A1 and B, against which the DoSomething options have been compared, represent scenarios with worse network operation and journey times than currently experienced. This is not only due to projected traffic growth (both background and from development) but also due to the increased level crossing closures. Section 4.4 shows that the projected increase in level crossing downtimes will have a significant effect on the highway network in and around Sleaford. Overall travel times will increase by between 5.5% and 7.7%, overcapacity queuing will double and, on average, journey times on specific routes analysed will increase by over 30%. Therefore, in reviewing the outputs from the above analysis, consideration should be given to the extent to which options generate improvements to that significantly worsened situation.

Overall, the modelling has shown that options that incorporate a new bridge over the railway line and closure of the South Gate level crossing, or the introduction of the

Sleaford Southern Distributor Road, would provide the greatest benefits and deliver some level of mitigation for the impact of the increased level crossing downtimes.

We have used our reasonable endeavours to provide information that is correct and accurate and have discussed above the reasonable conclusions that can be reached on the basis of the information available. Having issued the range of conclusions it is for the client to decide how to proceed with this project.

HIGHWAYS ALLIANCE

Appendix A - Summary of Network Changes

HIGHWAYS ALLIANCE

Appendix B - Correspondence from Network Rail

Appendix B - Summary of correspondence from Network Rail

Network Rail, in their email dated $21^{\text {st }}$ May, 2015, summarised the following changes proposed at the railway signal crossings in Sleaford.

1. It is proposed to convert the Sleaford east crossing (Southgate) from manual control barrier to obstacle detection to be achieved by upgrading it to a laser controlled crossing, triggered by the approach of the train. He further explained that such an arrangement is complicated due to the proximity of the crossing to the railway station as it requires that at least two signals are cleared following the lowering of the barriers.
2. The current barrier downtime is around $2.5 / 3$ minutes for all trains which is expected to increase to around 5 minutes for eastbound trains and 3 minutes 30 seconds for westbound trains.
3. Theoretically, the absolute number of trains which could be run through both the crossing per hour in both directions is 18; 4 trains per hour (tph) on Skegness route and 12tph on Peterborough route. He further expressed that it is highly unlikely that this capacity of will be reached as currently only 20 trains travel on the Peterborough route and 30 on the Skegness route, in additional to 4 freight trains; which is an average of 3.6 tph as opposed to a worst case of 18 tph .
4. Network Rail expressed that for modelling purposes it may be prudent to model a worst case of 9 tph as it is not expected that re-franchising or upsurges in freight traffic will lead to use the theoretical capacity of the network. The doubling of train services from current would yield approximately 5.2 tph .

Mouchel, in their email dated $21^{\text {st }}$ May, 2015, requested further clarification on the proposals for railway crossing on King Edward Street and whether 4tph constitutes of 2 tph in both direction?

Network Rail, in their reply dated $21^{\text {st }}$ May, 2015, confirmed that 4 tph constitutes of 2 tph in both directions the railway crossing on King Edward Street will also be upgraded to obstacle detection system similar to the crossing on Southgate with similar downtimes. He further explained that minor modification to the crossing (yellow box markings and better signage) are also proposed as part of the improvements.

Network Rail also provided the following information regarding Option 8 in their email of $9^{\text {th }}$ October 2015:
"There are two issues - firstly is the actual cost of the work, and secondly is the operational impacts on the timetable.

We have an example of a curve recently constructed at Todmorden (2013) so is quite realistic in terms of possible costs - 350 yds came out at just under £10 million but that did include a lot of re-signalling work, track renewal and a new footbridge but even stripping out a number of items and if it was timed to be in the same window as the re-signalling, we are still talking around $£ 6$ million or so (and this does not include the cost of purchase of the land in question) for one curve alone - and of course two would be needed in this instance. A curve from the Sleaford avoiding line onto the Lincoln line would also necessitate the re-grading of East Road and a second bridge (because the curvature would otherwise be too sharp for a freight train) and so would probably exceed $£ 6$ million. Costs in excess of $£ 12$ million dwarf the cost of automation of the crossing (around $£ 1.5$ million). This is currently programmed for 2019.

The second issue relates to operational matters and capacity. Currently a passenger train takes on average 4 minutes to pass from Sleaford West to Sleaford North junction, along a length of single track. Using the two new curves a Skegness train, assuming it had clear signals, would take on average an additional 10 minutes from leaving the station to regain its former route east of the avoiding line. A Lincoln Peterborough train would take a similar time, along with further dwell time at the station as the driver \& guard change ends. This length eats into the capacity available, exacerbated by the passage of freight trains over the avoiding line itself so the risk of perturbation increases significantly. This also reduces the dwell time at the terminals which in some cases could require a further unit in order to work the same level of service. A further issue is the length of time for a freight train to traverse the curves, which would also be longer, with increased risk of disruption to the timetable especially given the gradients required for the curves - which in turn also has a disbenefit in terms of noise from flange squeal and if a freight train is either stopped or stalls on the curves themselves.

All in all we consider the likely benefits to be gained from closure of the crossing using this solution are significantly outweighed by the costs of the proposed curves and the disbenefits it presents to the timetabling of trains and impact on the network. Bridging the railway in the vicinity of Sleaford East is by far a better and effective solution to solving the problem of congestion in the vicinity of the crossing."

HIGHWAYS ALLIANCE

Appendix C - TRICS reports - Proposed Development

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 03-RESIDENTIAL
Category : C - FLATS PRIVATELY OWNED
VEHI CLES
```

Selected regions and areas:
02 SOUTH EAST
EX ESSEX 2 days
HC HAMPSHIRE
HF HERTFORDSHIRE
1 days
1 days
OX OXFORDSHIRE
1 days
SC SURREY
03 SOUTH WEST
BR BRISTOL CITY
DC DORSET
04 EAST ANGLIA
CA CAMBRIDGESHIRE
1 days
05 EAST MI DLANDS
DS DERBYSHIRE 1 days
NR NORTHAMPTONSHIRE 1 days
06 WEST MI DLANDS
ST STAFFORDSHIRE
1 days
WM WEST MIDLANDS 1 days
07 YORKSHI RE \& NORTH LI NCOLNSHI RE
RI EAST RIDING OF YORKSHIRE
1 days
08 NORTH WEST
CH CHESHIRE 1 days
09 NORTH
TV TEES VALLEY
10 WALES
FS FLINTSHIRE
1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Filtering Stage 2 selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Site area
Actual Range:	0.07 to 1.33 (units: hect)
Range Selected by User:	0.05 to 3.40 (units: hect)

Public Transport Provision:
Selection by: Include all surveys

Date Range: $\quad 01 / 01 / 07$ to $13 / 05 / 14$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	4 days
Tuesday	5 days
Wednesday	5 days
Thursday	2 days
Friday	4 days

This data displays the number of selected surveys by day of the week.
Selected survey types:
$\begin{array}{lr}\text { Manual count } & 20 \text { days } \\ \text { Directional ATC Count } & 0 \text { days }\end{array}$
This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre 7
Suburban Area (PPS6 Out of Centre) 12
Edge of Town 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Residential Zone 13
Built-Up Zone 2
No Sub Category 5
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Filtering Stage 3 selection:

Use Class:
C3
20 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS ${ }^{\circledR}$.

Filtering Stage 3 selection (Cont.):

Population within 1 mile:

1,001 to 5,000	2 days
10,001 to 15,000	6 days
15,001 to 20,000	2 days
20,001 to 25,000	3 days
25,001 to 50,000	7 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

50,001 to 75,000	5 days
100,001 to 125,000	1 days
125,001 to 250,000	8 days
250,001 to 500,000	6 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:
0.6 to 1.0
3 days
1.1 to 1.5
17 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
No 20 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

LIST OF SITES relevant to selection parameters

1	BR-03-C-01 CLARENCE ROAD		BRISTOL CITY
	BRISTOL		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Site area:	1.33 hect	
	Survey date: MONDAY	09/11/09	Survey Type: MANUAL
2	CA-03-C-02 BLOCK OF FLATS		CAMBRIDGESHIRE
	WESTFIELD ROAD		
	NETHERTON		
	PETERBOROUGH		
	Suburban Area (PPS6 Out of Centre)		
	No Sub Category		
	Total Site area:	0.51 hect	
	Survey date: TUESDAY	18/10/11	Survey Type: MANUAL
3	CH-03-C-01 BLOCKS OF FLATS		CHESHIRE
	NEW CRANE STREET		
	CHESTER		
	Edge of Town Centre		
	Residential Zone		
	Total Site area:	0.30 hect	
	Survey date: FRIDAY	17/10/08	Survey Type: MANUAL
4	DC-03-C-01 BLOCKS OF FLATS		DORSET
	ABBOTSBURY ROAD		
	WEYMOUTH		
	Edge of Town Centre		
	Residential Zone		
	Total Site area:	0.18 hect	
	Survey date: TUESDAY	08/07/08	Survey Type: MANUAL
5	DC-03-C-02 FLATS IN BLOCKS		DORSET
	PALM COURT		
	SPA ROAD		
	WEYMOUTH		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Site area:	0.14 hect	
	Survey date: FRIDAY	28/03/14	Survey Type: MANUAL
6	DS-03-C-01 BLOCK OF FLATS		DERBYSHIRE
	DRAGE STREET		
	LITTLE CHESTER		
	DERBY		
	Suburban Area (PPS6 Out of Centre)		
	No Sub Category		
	Total Site area:	0.18 hect	
	Survey date: THURSDAY	25/06/09	Survey Type: MANUAL
7	EX-03-C-01 FLATS		ESSEX
	WESTCLIFF PARADE		
	WESTCLIFF		
	SOUTHEND-ON-SEA		
	Edge of Town Centre		
	Residential Zone		
	Total Site area:	0.07 hect	
	Survey date: TUESDAY	22/10/13	Survey Type: MANUAL

LIST OF SITES relevant to selection parameters (Cont.)

8	BLOCK OF FLATS		ESSEX
	WESTCLIFF PARADE		
	WESTCLIFF		
	SOUTHEND-ON-SEA		
	Edge of Town Centre		
	Residential Zone		
	Total Site area:	0.37 hect	
9	Survey date: TUESDAY	22/10/13	Survey Type: MANUAL
	BLOCK OF FLATS		FLINTSHIRE
	WREXHAM STREET		
	MOLD		
	Edge of Town Centre		
	Built-Up Zone		
	Total Site area:	0.21 hect	
	Survey date: MONDAY	06/07/09	Survey Type: MANUAL
10	FLATS		HAMPSHIRE
	WORTING ROAD		
	BASINGSTOKE		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Site area:	0.22 hect	
	Survey date: THURSDAY	21/10/10	Survey Type: MANUAL
11	HF-03-C-02 FLATS		HERTFORDSHIRE
	BRIDGE ROAD EAST		

WELWYN GARDEN CITY
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Site area: 0.76 hect Survey date: WEDNESDAY 16/07/08
12 NR-03-C-01
BLOCK OF FLATS
ROCKINGHAM ROAD
CORBY
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Site area: 0.20 hect Survey date: FRIDAY 21/11/08
13 OX-03-C-01 BLOCK OF FLATS
OXFORD ROAD
COWLEY
OXFORD
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Site area: 0.13 hect Survey date: WEDNESDAY 20/10/10

14 | RI-03-C-01 |
| :--- |
| 465 PRIORY ROAD |
| |
| |
| HULL |
| Edge of Town |
| Residential Zone |
| Total Site area: |
| Survey date: TUESDAY |

Survey Type: MANUAL
NORTHAMPTONSHI RE

Survey Type: MANUAL

OXFORDSHIRE

Survey Type: MANUAL

Survey Type: MANUAL

LIST OF SITES relevant to selection parameters (Cont.)

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 03 - RESIDENTIAL/C - FLATS PRIVATELY OWNED

VEHI CLES

Calculation factor: 1 hect

BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	20	0.50	3.414	20	0.50	14.859	20	0.50	18.273
08:00-09:00	20	0.50	7.831	20	0.50	25.904	20	0.50	33.735
09:00-10:00	20	0.50	7.129	20	0.50	10.241	20	0.50	17.370
10:00-11:00	20	0.50	8.735	20	0.50	9.639	20	0.50	18.374
11:00-12:00	20	0.50	8.133	20	0.50	8.233	20	0.50	16.366
12:00-13:00	20	0.50	9.538	20	0.50	10.944	20	0.50	20.482
13:00-14:00	20	0.50	10.643	20	0.50	10.442	20	0.50	21.085
14:00-15:00	20	0.50	9.940	20	0.50	9.940	20	0.50	19.880
15:00-16:00	20	0.50	11.847	20	0.50	9.036	20	0.50	20.883
16:00-17:00	20	0.50	13.253	20	0.50	10.040	20	0.50	23.293
17:00-18:00	20	0.50	24.398	20	0.50	11.647	20	0.50	36.045
18:00-19:00	20	0.50	17.169	20	0.50	10.944	20	0.50	28.113
19:00-20:00	2	0.17	28.571	2	0.17	17.143	2	0.17	45.714
20:00-21:00	2	0.17	8.571	2	0.17	2.857	2	0.17	11.428
21:00-22:00	2	0.17	11.429	2	0.17	8.571	2	0.17	20.000
22:00-23:00									
23:00-24:00									
Total Rates:			180.601			170.440			351.041

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:
0.07 to 1.33 (units: hect)

01/01/07-13/05/14
20
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/C - FLATS PRIVATELY OWNED

TAXIS
Calculation factor: 1 hect
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	20	0.50	0.502	20	0.50	0.502	20	0.50	1.004
08:00-09:00	20	0.50	0.402	20	0.50	0.402	20	0.50	0.804
09:00-10:00	20	0.50	0.201	20	0.50	0.201	20	0.50	0.402
10:00-11:00	20	0.50	0.201	20	0.50	0.201	20	0.50	0.402
11:00-12:00	20	0.50	0.201	20	0.50	0.201	20	0.50	0.402
12:00-13:00	20	0.50	0.201	20	0.50	0.201	20	0.50	0.402
13:00-14:00	20	0.50	0.301	20	0.50	0.301	20	0.50	0.602
14:00-15:00	20	0.50	0.602	20	0.50	0.502	20	0.50	1.104
15:00-16:00	20	0.50	0.100	20	0.50	0.201	20	0.50	0.301
16:00-17:00	20	0.50	0.100	20	0.50	0.201	20	0.50	0.301
17:00-18:00	20	0.50	0.402	20	0.50	0.402	20	0.50	0.804
18:00-19:00	20	0.50	0.502	20	0.50	0.502	20	0.50	1.004
19:00-20:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
20:00-21:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
21:00-22:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			3.715			3.817			7.532

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:
0.07 to 1.33 (units: hect)

01/01/07-13/05/14
20
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/C - FLATS PRIVATELY OWNED
OGVS
Calculation factor: 1 hect
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
08:00-09:00	20	0.50	0.100	20	0.50	0.100	20	0.50	0.200
09:00-10:00	20	0.50	0.100	20	0.50	0.100	20	0.50	0.200
10:00-11:00	20	0.50	0.201	20	0.50	0.201	20	0.50	0.402
11:00-12:00	20	0.50	0.402	20	0.50	0.301	20	0.50	0.703
12:00-13:00	20	0.50	0.201	20	0.50	0.301	20	0.50	0.502
13:00-14:00	20	0.50	0.100	20	0.50	0.100	20	0.50	0.200
14:00-15:00	20	0.50	0.201	20	0.50	0.000	20	0.50	0.201
15:00-16:00	20	0.50	0.100	20	0.50	0.201	20	0.50	0.301
16:00-17:00	20	0.50	0.201	20	0.50	0.201	20	0.50	0.402
17:00-18:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
18:00-19:00	20	0.50	0.100	20	0.50	0.000	20	0.50	0.100
19:00-20:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
20:00-21:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
21:00-22:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			1.706			1.505			3.211

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:
0.07 to 1.33 (units: hect)

01/01/07-13/05/14
20
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/C - FLATS PRIVATELY OWNED

PSVS
Calculation factor: 1 hect
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
08:00-09:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
09:00-10:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
10:00-11:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
11:00-12:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
12:00-13:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
13:00-14:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
14:00-15:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
15:00-16:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
16:00-17:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
17:00-18:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
18:00-19:00	20	0.50	0.000	20	0.50	0.000	20	0.50	0.000
19:00-20:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
20:00-21:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
21:00-22:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			0.000			0.000			0.000

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:
0.07 to 1.33 (units: hect)

01/01/07-13/05/14
20
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/C - FLATS PRIVATELY OWNED

CYCLISTS

Calculation factor: 1 hect

BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate	No. Days	Ave. AREA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	20	0.50	0.201	20	0.50	0.703	20	0.50	0.904
08:00-09:00	20	0.50	0.100	20	0.50	0.703	20	0.50	0.803
09:00-10:00	20	0.50	0.100	20	0.50	0.301	20	0.50	0.401
10:00-11:00	20	0.50	0.301	20	0.50	0.502	20	0.50	0.803
11:00-12:00	20	0.50	0.301	20	0.50	0.602	20	0.50	0.903
12:00-13:00	20	0.50	0.402	20	0.50	0.402	20	0.50	0.804
13:00-14:00	20	0.50	0.502	20	0.50	0.602	20	0.50	1.104
14:00-15:00	20	0.50	0.402	20	0.50	0.602	20	0.50	1.004
15:00-16:00	20	0.50	0.602	20	0.50	0.402	20	0.50	1.004
16:00-17:00	20	0.50	0.803	20	0.50	0.502	20	0.50	1.305
17:00-18:00	20	0.50	0.502	20	0.50	0.301	20	0.50	0.803
18:00-19:00	20	0.50	0.803	20	0.50	0.000	20	0.50	0.803
19:00-20:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
20:00-21:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
21:00-22:00	2	0.17	0.000	2	0.17	0.000	2	0.17	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			5.019			5.622			10.641

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:
0.07 to 1.33 (units: hect)

01/01/07-13/05/14
20
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 06-HOTEL, FOOD & DRINK
Category : D - FAST FOOD - DRIVE THROUGH
VEHI CLES
Selected regions and areas:
02 SOUTH EAST
    HC HAMPSHIRE 1 days
04 EAST ANGLIA
    CA CAMBRIDGESHIRE 1 days
0 6 ~ W E S T ~ M I ~ D L A N D S ~
    WM WEST MIDLANDS 1 days
11 SCOTLAND
    EB CITY OF EDINBURGH 1 days
```

This section displays the number of survey days per TRICS® sub-region in the selected set

Filtering Stage 2 selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area	
Actual Range:	250 to 475 (units: sqm)	
Range Selected by User:	182 to 800 (units: sqm)	
Public Transport Provision:		Include all surveys

Date Range: $\quad 01 / 01 / 07$ to $21 / 11 / 12$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Tuesday	1 days
3 days	

This data displays the number of selected surveys by day of the week.
Selected survey types:

Manual count	4 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre 1
Suburban Area (PPS6 Out of Centre) 3
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Residential Zone 2
Built-Up Zone 1
No Sub Category 1
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Filtering Stage $\mathbf{3}$ selection:

Use Class:	
A3	
A5 days	
3 days	

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 1 mile:

5,001 to 10,000	2 days
20,001 to 25,000	1 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:
75,001 to $100,000 \quad 1$ days

100,001 to 125,000	1 days
125,001 to 250,000	1 days
500,001 or More	1 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to $1.0 \quad 4$ days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:

No 4 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

TRICS 7.2.1 040615 B17.16	(C) 2015 TRICS Consortium Ltd	Friday
Sleaford Regen - Drive-thru restaurant	Page $\mathbf{1 5}$	
TfGM 2 Piccadilly Place \quad Manchester	Licence No: 203601	

LIST OF SITES relevant to selection parameters

1	CA-06-D-01 MCDONALDS NEWMARKET ROAD		CAMBRIDGESHIRE
	CAMBRIDGE		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Gross floor area:	450 sqm	
	Survey date: WEDNESDAY	19/10/11	Survey Type: MANUAL
2	EB-06-D-01 MCDONALDS		CITY OF EDI NBURGH
	GYLEMUIR ROAD		
	EDINBURGH		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Gross floor area:	475 sqm	
	Survey date: WEDNESDAY	18/06/08	Survey Type: MANUAL
3	HC-06-D-02 BURGER KI NG		HAMPSHIRE
	WELLINGTON AVENUE		
	ALDERSHOT		
	Edge of Town Centre		
	Built-Up Zone		
	Total Gross floor area:	465 sqm	
	Survey date: WEDNESDAY	20/10/10	Survey Type: MANUAL
4	WM-06-D-01 BURGER KI NG		WEST MI DLANDS
	KINGSBURY ROAD		
	ERDINGTON		
	BIRMINGHAM		
	Suburban Area (PPS6 Out of Centre)		
	No Sub Category		
	Total Gross floor area:	250 sqm	
	Survey date: TUESDAY	25/11/08	Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/D - FAST FOOD - DRIVE THROUGH
VEHI CLES
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	1	450	0.889	1	450	0.667	1	450	1.556
07:00-08:00	1	450	3.556	1	450	2.000	1	450	5.556
08:00-09:00	2	458	2.842	2	458	1.311	2	458	4.153
09:00-10:00	3	388	2.318	3	388	2.318	3	388	4.636
10:00-11:00	4	410	4.817	4	410	4.207	4	410	9.024
11:00-12:00	4	410	6.768	4	410	5.915	4	410	12.683
12:00-13:00	4	410	10.976	4	410	10.854	4	410	21.830
13:00-14:00	4	410	11.585	4	410	11.829	4	410	23.414
14:00-15:00	4	410	6.402	4	410	7.378	4	410	13.780
15:00-16:00	4	410	6.280	4	410	6.220	4	410	12.500
16:00-17:00	4	410	7.073	4	410	6.707	4	410	13.780
17:00-18:00	4	410	6.768	4	410	7.195	4	410	13.963
18:00-19:00	4	410	9.024	4	410	8.720	4	410	17.744
19:00-20:00	4	410	7.256	4	410	8.110	4	410	15.366
20:00-21:00	4	410	5.488	4	410	5.427	4	410	10.915
21:00-22:00	4	410	3.841	4	410	4.756	4	410	8.597
22:00-23:00	2	470	3.617	2	470	3.617	2	470	7.234
23:00-24:00	2	470	0.957	2	470	1.915	2	470	2.872
Total Rates:			100.457			99.146			199.603

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

250-475 (units: sqm)
01/01/07-21/11/12
4
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/D - FAST FOOD - DRIVE THROUGH
TAXIS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	1	450	0.000	1	450	0.000	1	450	0.000
07:00-08:00	1	450	0.000	1	450	0.000	1	450	0.000
08:00-09:00	2	458	0.000	2	458	0.000	2	458	0.000
09:00-10:00	3	388	0.000	3	388	0.000	3	388	0.000
10:00-11:00	4	410	0.061	4	410	0.061	4	410	0.122
11:00-12:00	4	410	0.000	4	410	0.000	4	410	0.000
12:00-13:00	4	410	0.061	4	410	0.061	4	410	0.122
13:00-14:00	4	410	0.061	4	410	0.000	4	410	0.061
14:00-15:00	4	410	0.244	4	410	0.244	4	410	0.488
15:00-16:00	4	410	0.061	4	410	0.122	4	410	0.183
16:00-17:00	4	410	0.183	4	410	0.183	4	410	0.366
17:00-18:00	4	410	0.000	4	410	0.000	4	410	0.000
18:00-19:00	4	410	0.061	4	410	0.061	4	410	0.122
19:00-20:00	4	410	0.061	4	410	0.061	4	410	0.122
20:00-21:00	4	410	0.122	4	410	0.122	4	410	0.244
21:00-22:00	4	410	0.061	4	410	0.061	4	410	0.122
22:00-23:00	2	470	0.000	2	470	0.000	2	470	0.000
23:00-24:00	2	470	0.000	2	470	0.000	2	470	0.000
Total Rates:			0.976			0.976			1.952

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

250-475 (units: sqm)
01/01/07-21/11/12
4
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/D - FAST FOOD - DRIVE THROUGH
OGVS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	1	450	0.000	1	450	0.000	1	450	0.000
07:00-08:00	1	450	0.000	1	450	0.000	1	450	0.000
08:00-09:00	2	458	0.000	2	458	0.000	2	458	0.000
09:00-10:00	3	388	0.000	3	388	0.000	3	388	0.000
10:00-11:00	4	410	0.000	4	410	0.000	4	410	0.000
11:00-12:00	4	410	0.061	4	410	0.061	4	410	0.122
12:00-13:00	4	410	0.061	4	410	0.061	4	410	0.122
13:00-14:00	4	410	0.061	4	410	0.061	4	410	0.122
14:00-15:00	4	410	0.000	4	410	0.000	4	410	0.000
15:00-16:00	4	410	0.000	4	410	0.000	4	410	0.000
16:00-17:00	4	410	0.061	4	410	0.061	4	410	0.122
17:00-18:00	4	410	0.000	4	410	0.000	4	410	0.000
18:00-19:00	4	410	0.000	4	410	0.000	4	410	0.000
19:00-20:00	4	410	0.000	4	410	0.000	4	410	0.000
20:00-21:00	4	410	0.000	4	410	0.000	4	410	0.000
21:00-22:00	4	410	0.000	4	410	0.000	4	410	0.000
22:00-23:00	2	470	0.000	2	470	0.000	2	470	0.000
23:00-24:00	2	470	0.000	2	470	0.000	2	470	0.000
Total Rates:			0.244			0.244			0.488

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

250-475 (units: sqm)
01/01/07-21/11/12
4
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/D - FAST FOOD - DRIVE THROUGH
PSVS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	1	450	0.000	1	450	0.000	1	450	0.000
07:00-08:00	1	450	0.000	1	450	0.000	1	450	0.000
08:00-09:00	2	458	0.000	2	458	0.000	2	458	0.000
09:00-10:00	3	388	0.000	3	388	0.000	3	388	0.000
10:00-11:00	4	410	0.000	4	410	0.000	4	410	0.000
11:00-12:00	4	410	0.000	4	410	0.000	4	410	0.000
12:00-13:00	4	410	0.000	4	410	0.000	4	410	0.000
13:00-14:00	4	410	0.000	4	410	0.000	4	410	0.000
14:00-15:00	4	410	0.000	4	410	0.000	4	410	0.000
15:00-16:00	4	410	0.000	4	410	0.000	4	410	0.000
16:00-17:00	4	410	0.000	4	410	0.000	4	410	0.000
17:00-18:00	4	410	0.000	4	410	0.000	4	410	0.000
18:00-19:00	4	410	0.000	4	410	0.000	4	410	0.000
19:00-20:00	4	410	0.000	4	410	0.000	4	410	0.000
20:00-21:00	4	410	0.000	4	410	0.000	4	410	0.000
21:00-22:00	4	410	0.000	4	410	0.000	4	410	0.000
22:00-23:00	2	470	0.000	2	470	0.000	2	470	0.000
23:00-24:00	2	470	0.000	2	470	0.000	2	470	0.000
Total Rates:			0.000			0.000			0.000

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

250-475 (units: sqm)
01/01/07-21/11/12
4
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/D - FAST FOOD - DRIVE THROUGH
CYCLISTS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	1	450	0.000	1	450	0.000	1	450	0.000
07:00-08:00	1	450	0.000	1	450	0.000	1	450	0.000
08:00-09:00	2	458	0.000	2	458	0.000	2	458	0.000
09:00-10:00	3	388	0.000	3	388	0.000	3	388	0.000
10:00-11:00	4	410	0.000	4	410	0.000	4	410	0.000
11:00-12:00	4	410	0.000	4	410	0.000	4	410	0.000
12:00-13:00	4	410	0.000	4	410	0.000	4	410	0.000
13:00-14:00	4	410	0.061	4	410	0.061	4	410	0.122
14:00-15:00	4	410	0.000	4	410	0.000	4	410	0.000
15:00-16:00	4	410	0.000	4	410	0.000	4	410	0.000
16:00-17:00	4	410	0.000	4	410	0.000	4	410	0.000
17:00-18:00	4	410	0.000	4	410	0.000	4	410	0.000
18:00-19:00	4	410	0.061	4	410	0.061	4	410	0.122
19:00-20:00	4	410	0.000	4	410	0.000	4	410	0.000
20:00-21:00	4	410	0.000	4	410	0.000	4	410	0.000
21:00-22:00	4	410	0.000	4	410	0.000	4	410	0.000
22:00-23:00	2	470	0.000	2	470	0.000	2	470	0.000
23:00-24:00	2	470	0.000	2	470	0.000	2	470	0.000
Total Rates:			0.122			0.122			0.244

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

250-475 (units: sqm)
01/01/07-21/11/12
4
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 01-RETAIL
Category : K - RETAIL PARK - EXCLUDING FOOD
VEHI CLES
```

Selected regions and areas:
03 SOUTH WEST
GS GLOUCESTERSHIRE 1 days
17 ULSTER (NORTHERN I RELAND)
AN ANTRIM
1 days
This section displays the number of survey days per TRICS® sub-region in the selected set

Filtering Stage 2 selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area	
Actual Range:	8177 to 8687 (units: sqm)	
Range Selected by User:	2057 to 35244 (units: sqm)	
Public Transport Provision:		Include all surveys

Date Range: $\quad 01 / 01 / 07$ to $07 / 06 / 14$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Thursday	1 days
Friday	1 days

This data displays the number of selected surveys by day of the week.

Selected survey types:

```
Manual count 2 days
Directional ATC Count 0 days
```

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre 1
Suburban Area (PPS6 Out of Centre) 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Retail Zone 1
No Sub Category 1
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Filtering Stage $\mathbf{3}$ selection:

Use Class:

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 1 mile:

1,001 to 5,000	1 days
10,001 to 15,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,001 to 25,000	1 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	1 days
1.1 to 1.5	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Petrol filling station:

Included in the survey count	0 days
Excluded from count or no filling station	2 days

Excluded from count or no
This data displays the number of surveys within the selected set that include petrol filling station activity, and the number of surveys that do not.

Travel Plan:
No 2 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

LIST OF SITES relevant to selection parameters

1 AN-01-K-01 RETAI L PARK 18 YOUNG STREET

LISBURN
Edge of Town Centre
Retail Zone
Total Gross floor area: Survey date: FRIDAY
2 GS-01-K-02 RETAI L PARK
EASTERN AVENUE
BARNWOOD
GLOUCESTER
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Gross floor area: Survey date: THURSDAY 28/11/13

8687 sqm

ANTRIM

Survey Type: MANUAL

GLOUCESTERSHIRE

$11 / 1013$
11/10/13

28/11/13 Survey Type: MANUAL
This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

MANUALLY DESELECTED SITES

Site Ref	Reason for Deselection
DL-01-K-02	Edge of town site inappropriate

TRIP RATE for Land Use 01 - RETAIL/K - RETAIL PARK - EXCLUDING FOOD

VEHI CLES

Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	2	8432	0.225	2	8432	0.030	2	8432	0.255
08:00-09:00	2	8432	0.421	2	8432	0.178	2	8432	0.599
09:00-10:00	2	8432	0.557	2	8432	0.332	2	8432	0.889
10:00-11:00	2	8432	0.528	2	8432	0.427	2	8432	0.955
11:00-12:00	2	8432	0.433	2	8432	0.374	2	8432	0.807
12:00-13:00	2	8432	0.427	2	8432	0.385	2	8432	0.812
13:00-14:00	2	8432	0.385	2	8432	0.380	2	8432	0.765
14:00-15:00	2	8432	0.356	2	8432	0.421	2	8432	0.777
15:00-16:00	2	8432	0.795	2	8432	0.901	2	8432	1.696
16:00-17:00	2	8432	0.771	2	8432	0.943	2	8432	1.714
17:00-18:00	2	8432	0.320	2	8432	0.451	2	8432	0.771
18:00-19:00	2	8432	0.380	2	8432	0.540	2	8432	0.920
19:00-20:00	2	8432	0.196	2	8432	0.344	2	8432	0.540
20:00-21:00	2	8432	0.172	2	8432	0.130	2	8432	0.302
21:00-22:00	2	8432	0.000	2	8432	0.089	2	8432	0.089
22:00-23:00									
23:00-24:00									
Total Rates:			5.966			5.925			11.891

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

8177-8687 (units: sqm)
01/01/07-07/06/14
2
0
0
2

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 01 - RETAIL/K - RETAIL PARK - EXCLUDING FOOD
TAXIS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
08:00-09:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
09:00-10:00	2	8432	0.018	2	8432	0.018	2	8432	0.036
10:00-11:00	2	8432	0.006	2	8432	0.006	2	8432	0.012
11:00-12:00	2	8432	0.012	2	8432	0.012	2	8432	0.024
12:00-13:00	2	8432	0.006	2	8432	0.006	2	8432	0.012
13:00-14:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
14:00-15:00	2	8432	0.006	2	8432	0.006	2	8432	0.012
15:00-16:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
16:00-17:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
17:00-18:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
18:00-19:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
19:00-20:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
20:00-21:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
21:00-22:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			0.048			0.048			0.096

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
8177-8687 (units: sqm)
$01 / 01 / 07-07 / 06 / 14$
2
0
0
2

Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays: 0
Surveys manually removed from selection: 2
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 01 - RETAIL/K - RETAIL PARK - EXCLUDING FOOD
OGVS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	2	8432	0.006	2	8432	0.000	2	8432	0.006
08:00-09:00	2	8432	0.012	2	8432	0.018	2	8432	0.030
09:00-10:00	2	8432	0.000	2	8432	0.006	2	8432	0.006
10:00-11:00	2	8432	0.006	2	8432	0.006	2	8432	0.012
11:00-12:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
12:00-13:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
13:00-14:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
14:00-15:00	2	8432	0.006	2	8432	0.006	2	8432	0.012
15:00-16:00	2	8432	0.006	2	8432	0.000	2	8432	0.006
16:00-17:00	2	8432	0.036	2	8432	0.042	2	8432	0.078
17:00-18:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
18:00-19:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
19:00-20:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
20:00-21:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
21:00-22:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			0.072			0.078			0.150

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
8177-8687 (units: sqm)
$01 / 01 / 07-07 / 06 / 14$
2
0
0
2

Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays: 0
Surveys manually removed from selection: 2
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 01 - RETAIL/K - RETAIL PARK - EXCLUDING FOOD
PSVS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	$\begin{aligned} & \hline \text { No. } \\ & \text { Days } \\ & \hline \end{aligned}$	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
08:00-09:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
09:00-10:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
10:00-11:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
11:00-12:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
12:00-13:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
13:00-14:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
14:00-15:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
15:00-16:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
16:00-17:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
17:00-18:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
18:00-19:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
19:00-20:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
20:00-21:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
21:00-22:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			0.000			0.000			0.000

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
8177-8687 (units: sqm)
$01 / 01 / 07-07 / 06 / 14$
2
0
0
2

Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays: 0
Surveys manually removed from selection: 2
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 01 - RETAIL/K - RETAIL PARK - EXCLUDING FOOD
CYCLISTS

Calculation factor: $\mathbf{1 0 0}$ sqm

BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
08:00-09:00	2	8432	0.036	2	8432	0.000	2	8432	0.036
09:00-10:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
10:00-11:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
11:00-12:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
12:00-13:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
13:00-14:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
14:00-15:00	2	8432	0.000	2	8432	0.012	2	8432	0.012
15:00-16:00	2	8432	0.000	2	8432	0.006	2	8432	0.006
16:00-17:00	2	8432	0.030	2	8432	0.006	2	8432	0.036
17:00-18:00	2	8432	0.024	2	8432	0.042	2	8432	0.066
18:00-19:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
19:00-20:00	2	8432	0.012	2	8432	0.006	2	8432	0.018
20:00-21:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
21:00-22:00	2	8432	0.000	2	8432	0.000	2	8432	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			0.102			0.072			0.174

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:

```
8177-8687 (units: sqm)
01/01/07-07/06/14
2
```

Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 2

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 03-RESIDENTIAL
Category : N - RETIREMENT FLATS
VEHI CLES
```

Selected regions and areas:
02 SOUTH EAST
KC KENT 1 days
07 YORKSHI RE \& NORTH LI NCOLNSHI RE
SY SOUTH YORKSHIRE
10 WALES
PS POWYS 1 days
VG VALE OF GLAMORGAN 1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Filtering Stage 2 selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Number of dwellings	
Actual Range:	28 to 52 (units:)	
Range Selected by User:	28 to 76 (units:)	
Public Transport Provision:		Include all surveys

Date Range: $\quad 01 / 01 / 07$ to $19 / 12 / 12$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	2 days
Wednesday	1 days
Friday	1 days

This data displays the number of selected surveys by day of the week.
Selected survey types:

Manual count	4 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre 2
Suburban Area (PPS6 Out of Centre) 2
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:	
Residential Zone	2
No Sub Category	2

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Filtering Stage $\mathbf{3}$ selection:

Use Class:

C3 4 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 1 mile:
5,001 to $10,000 \quad 1$ days
15,001 to $20,000 \quad 2$ days
25,001 to $50,000 \quad 1$ days
This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,001 to 25,000	1 days
100,001 to 125,000	1 days
125,001 to 250,000	2 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	1 days
1.1 to 1.5	3 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
No 4 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

LIST OF SITES relevant to selection parameters

1	KC-03-N-05 HARDRES STREET		KENT
	RAMSGATE		
	Edge of Town Centre		
	No Sub Category		
	Total Number of dwellings:	41	
	Survey date: MONDAY	07/12/09	Survey Type: MANUAL
2	PS-03-N-01 HEOL GOUESNOU		POWYS
	BRECON		
	Edge of Town Centre		
	No Sub Category		
	Total Number of dwellings:	52	
	Survey date: FRIDAY	05/09/08	Survey Type: MANUAL
3	SY-03-N-01 RETIREMENT FLATS		SOUTH YORKSHI RE
	MOSS CLOSE		
	WICKERSLEY		
	NEAR ROTHERHAM		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Number of dwellings:	28	
	Survey date: WEDNESDAY	19/12/12	Survey Type: MANUAL
4	VG-03-N-01 RETIREMENT FLATS		VALE OF GLAMORGAN
	BRADFORD PLACE		
	PENARTH		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Number of dwellings:	46	
	Survey date: MONDAY	16/07/12	Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 03 - RESIDENTIAL/N - RETIREMENT FLATS

VEHI CLES

Calculation factor: 1 DWELLS
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	4	42	0.054	4	42	0.066	4	42	0.120
08:00-09:00	4	42	0.114	4	42	0.096	4	42	0.210
09:00-10:00	4	42	0.060	4	42	0.060	4	42	0.120
10:00-11:00	4	42	0.072	4	42	0.096	4	42	0.168
11:00-12:00	4	42	0.108	4	42	0.132	4	42	0.240
12:00-13:00	4	42	0.102	4	42	0.108	4	42	0.210
13:00-14:00	4	42	0.054	4	42	0.072	4	42	0.126
14:00-15:00	4	42	0.084	4	42	0.066	4	42	0.150
15:00-16:00	4	42	0.066	4	42	0.066	4	42	0.132
16:00-17:00	4	42	0.132	4	42	0.102	4	42	0.234
17:00-18:00	4	42	0.054	4	42	0.066	4	42	0.120
18:00-19:00	4	42	0.078	4	42	0.048	4	42	0.126
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.978			0.978			1.956

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
28-52 (units:)
Survey date date range:
01/01/07-19/12/12
Number of weekdays (Monday-Friday):
4
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 0
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/N - RETIREMENT FLATS

TAXIS
Calculation factor: 1 DWELLS BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	4	42	0.006	4	42	0.006	4	42	0.012
08:00-09:00	4	42	0.006	4	42	0.006	4	42	0.012
09:00-10:00	4	42	0.000	4	42	0.000	4	42	0.000
10:00-11:00	4	42	0.006	4	42	0.006	4	42	0.012
11:00-12:00	4	42	0.006	4	42	0.006	4	42	0.012
12:00-13:00	4	42	0.000	4	42	0.000	4	42	0.000
13:00-14:00	4	42	0.000	4	42	0.000	4	42	0.000
14:00-15:00	4	42	0.006	4	42	0.006	4	42	0.012
15:00-16:00	4	42	0.006	4	42	0.006	4	42	0.012
16:00-17:00	4	42	0.018	4	42	0.018	4	42	0.036
17:00-18:00	4	42	0.000	4	42	0.000	4	42	0.000
18:00-19:00	4	42	0.000	4	42	0.000	4	42	0.000
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.054			0.054			0.108

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

```
28-52 (units:)
01/01/07-19/12/12
4
0
0
0
```

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/N - RETIREMENT FLATS
OGVS
Calculation factor: 1 DWELLS
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	4	42	0.000	4	42	0.000	4	42	0.000
08:00-09:00	4	42	0.000	4	42	0.000	4	42	0.000
09:00-10:00	4	42	0.000	4	42	0.000	4	42	0.000
10:00-11:00	4	42	0.006	4	42	0.000	4	42	0.006
11:00-12:00	4	42	0.000	4	42	0.000	4	42	0.000
12:00-13:00	4	42	0.000	4	42	0.000	4	42	0.000
13:00-14:00	4	42	0.000	4	42	0.000	4	42	0.000
14:00-15:00	4	42	0.000	4	42	0.000	4	42	0.000
15:00-16:00	4	42	0.000	4	42	0.000	4	42	0.000
16:00-17:00	4	42	0.000	4	42	0.000	4	42	0.000
17:00-18:00	4	42	0.000	4	42	0.006	4	42	0.006
18:00-19:00	4	42	0.000	4	42	0.000	4	42	0.000
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.006			0.006			0.012

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

```
28-52 (units:)
01/01/07-19/12/12
4
0
0
0
```

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/N - RETIREMENT FLATS
PSVS
Calculation factor: 1 DWELLS
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	4	42	0.000	4	42	0.000	4	42	0.000
08:00-09:00	4	42	0.000	4	42	0.000	4	42	0.000
09:00-10:00	4	42	0.006	4	42	0.000	4	42	0.006
10:00-11:00	4	42	0.000	4	42	0.006	4	42	0.006
11:00-12:00	4	42	0.000	4	42	0.000	4	42	0.000
12:00-13:00	4	42	0.000	4	42	0.000	4	42	0.000
13:00-14:00	4	42	0.000	4	42	0.000	4	42	0.000
14:00-15:00	4	42	0.000	4	42	0.000	4	42	0.000
15:00-16:00	4	42	0.000	4	42	0.000	4	42	0.000
16:00-17:00	4	42	0.006	4	42	0.006	4	42	0.012
17:00-18:00	4	42	0.000	4	42	0.000	4	42	0.000
18:00-19:00	4	42	0.000	4	42	0.000	4	42	0.000
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.012			0.012			0.024

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

```
28-52 (units:)
01/01/07-19/12/12
4
0
0
0
```

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/N - RETIREMENT FLATS
CYCLISTS

Calculation factor: 1 DWELLS

BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate	No. Days	Ave. DWELLS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	4	42	0.012	4	42	0.006	4	42	0.018
08:00-09:00	4	42	0.000	4	42	0.006	4	42	0.006
09:00-10:00	4	42	0.000	4	42	0.000	4	42	0.000
10:00-11:00	4	42	0.000	4	42	0.000	4	42	0.000
11:00-12:00	4	42	0.006	4	42	0.006	4	42	0.012
12:00-13:00	4	42	0.000	4	42	0.000	4	42	0.000
13:00-14:00	4	42	0.006	4	42	0.000	4	42	0.006
14:00-15:00	4	42	0.000	4	42	0.006	4	42	0.006
15:00-16:00	4	42	0.000	4	42	0.000	4	42	0.000
16:00-17:00	4	42	0.000	4	42	0.000	4	42	0.000
17:00-18:00	4	42	0.000	4	42	0.000	4	42	0.000
18:00-19:00	4	42	0.000	4	42	0.000	4	42	0.000
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.024			0.024			0.048

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
28-52 (units:)
Survey date date range:
01/01/07-19/12/12
Number of weekdays (Monday-Friday):
4
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 0
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

Land Use Category VEHI CLES		: 06 - HOTEL, FOOD	
		: C-PUB/RESTAURA	
Selected regions and areas:			
02	SOU	H EAST	
	BF	BRACKNELL FOREST	1 days
	HC	HAMPSHIRE	1 days
03		H WEST	
	CW	CORNWALL	1 days
05		MI DLANDS	
	NT	NOTTINGHAMSHIRE	1 days
09	NO		
	TV	TEES VALLEY	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Filtering Stage 2 selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area	
Actual Range:	285 to 1200 (units: sqm)	
Range Selected by User:	112 to 2384 (units: sqm)	
Public Transport Provision:		Include all surveys
Selection by:		
Date Range: $\quad 01 / 01 / 07$ to $25 / 05 / 14$		

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:
Friday 5 days
This data displays the number of selected surveys by day of the week.
Selected survey types:

Manual count	5 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre 1
Suburban Area (PPS6 Out of Centre) 4
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:	
Residential Zone	2
No Sub Category	3

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

TfGM 2 Piccadilly Place Manchester

Filtering Stage $\mathbf{3}$ selection:

Use Class:	
A3	1 days
A4	4 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 1 mile:

10,001 to 15,000	1 days
15,001 to 20,000	2 days
25,001 to 50,000	2 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

50,001 to 75,000	1 days
100,001 to 125,000	1 days
250,001 to 500,000	3 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	2 days
1.1 to 1.5	3 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:

No 5 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

TRICS 7.2.1 040615 B17.16	(C) 2015	TRICS Consortium Ltd
Sleaford Regen - Pub/ restaurant	Friday	19/06/ 15
TfGM 2 Piccadilly Place \quad Manchester	Licence No: 203601	

LIST OF SITES relevant to selection parameters

1	BF-06-C-01 HARVESTER BAGSHOT ROAD		BRACKNELL FOREST
	BRACKNELL		
	Edge of Town Centre		
	Residential Zone		
	Total Gross floor area:	725 sqm	
	Survey date: FRIDAY	23/11/12	Survey Type: MANUAL
2	CW-06-C-01 PUB/ RESTAURANT		CORNWALL
	FORE STREET		
	POOL		
	CAMBORNE		
	Suburban Area (PPS6 Out of Centre)		
	No Sub Category		
	Total Gross floor area:	285 sqm	
	Survey date: FRIDAY	21/09/07	Survey Type: MANUAL
3	HC-06-C-02 BEEFEATER		HAMPSHIRE
	BOURNEMOUTH ROAD		
	AMPFIELD		
	EASTLEIGH		
	Suburban Area (PPS6 Out of Centre)		
	No Sub Category		
	Total Gross floor area:	450 sqm	
	Survey date: FRIDAY	16/11/07	Survey Type: MANUAL
4	NT-06-C-02 PUB/ RESTAURANT		NOTTI NGHAMSHI RE
	MANSFIELD ROAD		
	DAYBROOK		
	NOTTINGHAM		
	Suburban Area (PPS6 Out of Centre)		
	Residential Zone		
	Total Gross floor area:	1185 sqm	
	Survey date: FRIDAY	18/05/07	Survey Type: MANUAL
5	TV-06-C-01 PUB/ RES.		TEES VALLEY
	MARTON ROAD		
	MIDDLESBROUGH		
	Suburban Area (PPS6 Out of Centre)		
	No Sub Category		
	Total Gross floor area:	1200 sqm	
	Survey date: FRIDAY	21/09/07	Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/C - PUB/RESTAURANT
VEHI CLES
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00									
08:00-09:00									
09:00-10:00									
10:00-11:00	5	769	0.286	5	769	0.156	5	769	0.442
11:00-12:00	5	769	0.936	5	769	0.416	5	769	1.352
12:00-13:00	5	769	2.471	5	769	1.014	5	769	3.485
13:00-14:00	5	769	1.899	5	769	2.055	5	769	3.954
14:00-15:00	5	769	1.274	5	769	2.237	5	769	3.511
15:00-16:00	5	769	0.910	5	769	1.222	5	769	2.132
16:00-17:00	5	769	1.352	5	769	1.118	5	769	2.470
17:00-18:00	5	769	2.211	5	769	1.664	5	769	3.875
18:00-19:00	5	769	2.705	5	769	1.769	5	769	4.474
19:00-20:00	5	769	2.549	5	769	2.003	5	769	4.552
20:00-21:00	5	769	1.274	5	769	1.925	5	769	3.199
21:00-22:00	5	769	0.624	5	769	1.456	5	769	2.080
22:00-23:00	5	769	0.390	5	769	1.118	5	769	1.508
23:00-24:00	5	769	0.156	5	769	1.066	5	769	1.222
Total Rates:			19.037			19.219			38.256

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
285-1200 (units: sqm)
Survey date date range:
Number of weekdays (Monday-Friday):
01/01/07-25/05/14
Number of Saturdays:
5
0
Number of Sundays: 0
Surveys manually removed from selection: 0
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/C - PUB/RESTAURANT
TAXIS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00									
08:00-09:00									
09:00-10:00									
10:00-11:00	5	769	0.000	5	769	0.000	5	769	0.000
11:00-12:00	5	769	0.026	5	769	0.026	5	769	0.052
12:00-13:00	5	769	0.052	5	769	0.052	5	769	0.104
13:00-14:00	5	769	0.000	5	769	0.000	5	769	0.000
14:00-15:00	5	769	0.000	5	769	0.000	5	769	0.000
15:00-16:00	5	769	0.026	5	769	0.026	5	769	0.052
16:00-17:00	5	769	0.000	5	769	0.000	5	769	0.000
17:00-18:00	5	769	0.104	5	769	0.078	5	769	0.182
18:00-19:00	5	769	0.052	5	769	0.052	5	769	0.104
19:00-20:00	5	769	0.156	5	769	0.182	5	769	0.338
20:00-21:00	5	769	0.026	5	769	0.026	5	769	0.052
21:00-22:00	5	769	0.052	5	769	0.052	5	769	0.104
22:00-23:00	5	769	0.104	5	769	0.104	5	769	0.208
23:00-24:00	5	769	0.026	5	769	0.026	5	769	0.052
Total Rates:			0.624			0.624			1.248

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
285-1200 (units: sqm)
Survey date date range:
Number of weekdays (Monday-Friday):
01/01/07-25/05/14
5
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 0
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/C - PUB/RESTAURANT
OGVS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00									
08:00-09:00									
09:00-10:00									
10:00-11:00	5	769	0.026	5	769	0.052	5	769	0.078
11:00-12:00	5	769	0.130	5	769	0.078	5	769	0.208
12:00-13:00	5	769	0.026	5	769	0.026	5	769	0.052
13:00-14:00	5	769	0.000	5	769	0.052	5	769	0.052
14:00-15:00	5	769	0.000	5	769	0.000	5	769	0.000
15:00-16:00	5	769	0.026	5	769	0.026	5	769	0.052
16:00-17:00	5	769	0.000	5	769	0.000	5	769	0.000
17:00-18:00	5	769	0.000	5	769	0.000	5	769	0.000
18:00-19:00	5	769	0.026	5	769	0.026	5	769	0.052
19:00-20:00	5	769	0.000	5	769	0.000	5	769	0.000
20:00-21:00	5	769	0.000	5	769	0.000	5	769	0.000
21:00-22:00	5	769	0.000	5	769	0.000	5	769	0.000
22:00-23:00	5	769	0.000	5	769	0.000	5	769	0.000
23:00-24:00	5	769	0.000	5	769	0.000	5	769	0.000
Total Rates:			0.234			0.260			0.494

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
285-1200 (units: sqm)
Survey date date range:
Number of weekdays (Monday-Friday):
01/01/07-25/05/14
5
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 0
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/C - PUB/RESTAURANT
PSVS
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00									
08:00-09:00									
09:00-10:00									
10:00-11:00	5	769	0.000	5	769	0.000	5	769	0.000
11:00-12:00	5	769	0.052	5	769	0.000	5	769	0.052
12:00-13:00	5	769	0.000	5	769	0.000	5	769	0.000
13:00-14:00	5	769	0.000	5	769	0.052	5	769	0.052
14:00-15:00	5	769	0.000	5	769	0.000	5	769	0.000
15:00-16:00	5	769	0.000	5	769	0.000	5	769	0.000
16:00-17:00	5	769	0.000	5	769	0.000	5	769	0.000
17:00-18:00	5	769	0.000	5	769	0.000	5	769	0.000
18:00-19:00	5	769	0.000	5	769	0.000	5	769	0.000
19:00-20:00	5	769	0.000	5	769	0.000	5	769	0.000
20:00-21:00	5	769	0.000	5	769	0.000	5	769	0.000
21:00-22:00	5	769	0.000	5	769	0.000	5	769	0.000
22:00-23:00	5	769	0.000	5	769	0.000	5	769	0.000
23:00-24:00	5	769	0.000	5	769	0.000	5	769	0.000
Total Rates:			0.052			0.052			0.104

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
285-1200 (units: sqm)
Survey date date range:
Number of weekdays (Monday-Friday):
01/01/07-25/05/14
Number of Saturdays:
5
0
Number of Sundays: 0
Surveys manually removed from selection: 0
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/C - PUB/RESTAURANT
CYCLISTS

Calculation factor: $\mathbf{1 0 0}$ sqm

BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00									
08:00-09:00									
09:00-10:00									
10:00-11:00	5	769	0.000	5	769	0.000	5	769	0.000
11:00-12:00	5	769	0.026	5	769	0.026	5	769	0.052
12:00-13:00	5	769	0.026	5	769	0.000	5	769	0.026
13:00-14:00	5	769	0.000	5	769	0.000	5	769	0.000
14:00-15:00	5	769	0.026	5	769	0.026	5	769	0.052
15:00-16:00	5	769	0.026	5	769	0.000	5	769	0.026
16:00-17:00	5	769	0.000	5	769	0.052	5	769	0.052
17:00-18:00	5	769	0.000	5	769	0.000	5	769	0.000
18:00-19:00	5	769	0.000	5	769	0.000	5	769	0.000
19:00-20:00	5	769	0.052	5	769	0.000	5	769	0.052
20:00-21:00	5	769	0.026	5	769	0.078	5	769	0.104
21:00-22:00	5	769	0.026	5	769	0.026	5	769	0.052
22:00-23:00	5	769	0.000	5	769	0.000	5	769	0.000
23:00-24:00	5	769	0.000	5	769	0.000	5	769	0.000
Total Rates:			0.208			0.208			0.416

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
285-1200 (units: sqm)
Survey date date range:
Number of weekdays (Monday-Friday):
01/01/07-25/05/14
5
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 0
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

HIGHWAYS ALLIANCE

Appendix D - Flow Diagrams

Appendix D - Network Flow Diagrams

Reference Case A0 2022 AM

Reference Case A0 2022 PM

Reference Case A1 2022 AM

Reference Case A1 2022 PM

Reference Case B 2022 AM

Reference Case B 2022 PM

Option1 2022 AM

Option1 2022 PM

Option2 2022 AM

Option2 2022 PM

Option3 2022 AM

Option3 2022 PM

Option4A 2022 AM

Option4A 2022 PM

Option 4B 2022 AM

Option 4B 2022 PM

Option5 2022 AM

Option5 2022 PM

Option6 2022 AM

Option6 2022 PM

Option7 2022 AM

Option7 2022 PM

Option 9A 2022 AM

Option 9A 2022 PM

Option 9B 2022 AM

Option 9B 2022 PM

Appendix E - Junction Operation Summary

